Difference between revisions of "2011 AIME I Problems/Problem 13"
m (→Solution 2) |
m (→Solution 3) |
||
Line 10: | Line 10: | ||
Solving the equation is easier if we substitute <math>11-d=y</math>, to get <math>3y^2+2=100</math>, or <math>y=\sqrt {98/3}</math>. The distance from the origin to the plane is simply <math>d</math>, which is equal to <math>11-\sqrt{98/3} =(33-\sqrt{294})/3</math>, so <math>33+294+3=\boxed{330}</math>. | Solving the equation is easier if we substitute <math>11-d=y</math>, to get <math>3y^2+2=100</math>, or <math>y=\sqrt {98/3}</math>. The distance from the origin to the plane is simply <math>d</math>, which is equal to <math>11-\sqrt{98/3} =(33-\sqrt{294})/3</math>, so <math>33+294+3=\boxed{330}</math>. | ||
− | ==Solution | + | ==Solution 2== |
Let the vertices with distance <math>10,11,12</math> be <math>B,C,D</math>, respectively. An equilateral triangle <math>\triangle BCD</math> is formed with side length <math>10\sqrt{2}</math>. We care only about the <math>z</math> coordinate: <math>B=10,C=11,D=12</math>. It is well known that the centroid of a triangle is the average of the coordinates of its three vertices, so <math>\text{centroid}=(10+11+12)/3=11</math>. Designate the midpoint of <math>BD</math> as <math>M</math>. Notice that median <math>CM</math> is parallel to the plane because the <math>\text{centroid}</math> and vertex <math>C</math> have the same <math>z</math> coordinate, <math>11</math>, and the median contains <math>C</math> and the <math>\text{centroid}</math>. We seek the angle <math>\theta</math> of the line:<math>(1)</math> through the centroid <math>(2)</math> perpendicular to the plane formed by <math>\triangle BCD</math>, <math>(3)</math> with the plane under the cube. Since the median is parallel to the plane, this orthogonal line is also perpendicular <math>\textit{in slope}</math> to <math>BD</math>. Since <math>BD</math> makes a <math>2-14-10\sqrt{2}</math> right triangle, the orthogonal line makes the same right triangle rotated <math>90^\circ</math>. Therefore, <math>\sin\theta=\frac{14}{10\sqrt{2}}=\frac{7\sqrt{2}}{10}</math>. | Let the vertices with distance <math>10,11,12</math> be <math>B,C,D</math>, respectively. An equilateral triangle <math>\triangle BCD</math> is formed with side length <math>10\sqrt{2}</math>. We care only about the <math>z</math> coordinate: <math>B=10,C=11,D=12</math>. It is well known that the centroid of a triangle is the average of the coordinates of its three vertices, so <math>\text{centroid}=(10+11+12)/3=11</math>. Designate the midpoint of <math>BD</math> as <math>M</math>. Notice that median <math>CM</math> is parallel to the plane because the <math>\text{centroid}</math> and vertex <math>C</math> have the same <math>z</math> coordinate, <math>11</math>, and the median contains <math>C</math> and the <math>\text{centroid}</math>. We seek the angle <math>\theta</math> of the line:<math>(1)</math> through the centroid <math>(2)</math> perpendicular to the plane formed by <math>\triangle BCD</math>, <math>(3)</math> with the plane under the cube. Since the median is parallel to the plane, this orthogonal line is also perpendicular <math>\textit{in slope}</math> to <math>BD</math>. Since <math>BD</math> makes a <math>2-14-10\sqrt{2}</math> right triangle, the orthogonal line makes the same right triangle rotated <math>90^\circ</math>. Therefore, <math>\sin\theta=\frac{14}{10\sqrt{2}}=\frac{7\sqrt{2}}{10}</math>. | ||
Revision as of 07:40, 5 July 2021
Problem
A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labeled . The three vertices adjacent to vertex are at heights 10, 11, and 12 above the plane. The distance from vertex to the plane can be expressed as , where , , and are positive integers. Find .
Solution 1
Set the cube at the origin with the three vertices along the axes and the plane equal to , where . The distance from a point to a plane with equation is so the (directed) distance from any point to the plane is . So, by looking at the three vertices, we have , and by rearranging and summing,
Solving the equation is easier if we substitute , to get , or . The distance from the origin to the plane is simply , which is equal to , so .
Solution 2
Let the vertices with distance be , respectively. An equilateral triangle is formed with side length . We care only about the coordinate: . It is well known that the centroid of a triangle is the average of the coordinates of its three vertices, so . Designate the midpoint of as . Notice that median is parallel to the plane because the and vertex have the same coordinate, , and the median contains and the . We seek the angle of the line: through the centroid perpendicular to the plane formed by , with the plane under the cube. Since the median is parallel to the plane, this orthogonal line is also perpendicular to . Since makes a right triangle, the orthogonal line makes the same right triangle rotated . Therefore, .
It is also known that the centroid of is a third of the way between vertex and , the vertex farthest from the plane. Since is a diagonal of the cube, . So the distance from the to is . So, the from to the centroid is .
Thus the distance from to the plane is , and .
Video Solution
https://youtube.com/watch?v=Wi-aqv8Ron0
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.