Difference between revisions of "G285 2021 MC10B"

m (Problem 1)
m
Line 1: Line 1:
 +
 
==Problem 1==
 
==Problem 1==
 
Find <math>\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil</math>
 
Find <math>\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil</math>
Line 16: Line 17:
 
A convex hexagon of length <math>s</math> is inscribed in a circle of radius <math>r</math>, where <math>r \neq s</math>. If <math>\frac{s}{2r}=\frac{21}{29}</math>, and <math>rs=58</math>, find the area of the hexagon.
 
A convex hexagon of length <math>s</math> is inscribed in a circle of radius <math>r</math>, where <math>r \neq s</math>. If <math>\frac{s}{2r}=\frac{21}{29}</math>, and <math>rs=58</math>, find the area of the hexagon.
  
<math>\textbf{(A)}\ 60\qquad\textbf{(B)}\ 90\qquad\textbf{(C)}\ 120\qquad\textbf{(D)}\ 240\qquad\textbf{(E)}\ 480</math>
+
<math>\textbf{(A)}\ 42\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 84\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 120</math>
  
 
[[G285 MC10B Problems/Problem 3|Solution]]
 
[[G285 MC10B Problems/Problem 3|Solution]]

Revision as of 15:55, 12 May 2021

Problem 1

Find $\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil$

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46$

Solution

Problem 2

If $deg(Q(x))=3$, and $deg(K(x))=2$, and $Q(x)=(x-2)K(x)$, what is $deg(Q(x)-2K(x))$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution

Problem 3

A convex hexagon of length $s$ is inscribed in a circle of radius $r$, where $r \neq s$. If $\frac{s}{2r}=\frac{21}{29}$, and $rs=58$, find the area of the hexagon.

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 84\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 120$

Solution