Difference between revisions of "1989 AJHSME Problems/Problem 7"

(Solution)
 
(5 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
20(25)+10(10) &= 10(25)+n(10) \\
 
20(25)+10(10) &= 10(25)+n(10) \\
 
600 &= 250+10n \\
 
600 &= 250+10n \\
35 &= n \rightarrow \boxed{\text{D}}
+
35 &= n \implies \boxed{\text{D}}
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 +
 +
 +
 +
 +
 +
The  <math>n</math> dimes' values need to sum to <math>10</math> quarters and <math>10</math> dimes.<cmath>10n=10\cdot25 + 10\cdot 10</cmath> we can divide both sides by <math>10</math>.
 +
<cmath>n=25+10=35</cmath>
 +
So, our answer is <math>\boxed{\text{D}}</math>----stjwyl
  
 
==See Also==
 
==See Also==

Latest revision as of 16:14, 29 April 2021

Problem

If the value of $20$ quarters and $10$ dimes equals the value of $10$ quarters and $n$ dimes, then $n=$

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 35 \qquad \text{(E)}\ 45$

Solution

We have \begin{align*} 20(25)+10(10) &= 10(25)+n(10) \\ 600 &= 250+10n \\ 35 &= n \implies \boxed{\text{D}} \end{align*}



The $n$ dimes' values need to sum to $10$ quarters and $10$ dimes.\[10n=10\cdot25 + 10\cdot 10\] we can divide both sides by $10$. \[n=25+10=35\] So, our answer is $\boxed{\text{D}}$----stjwyl

See Also

1989 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png