Difference between revisions of "2010 AMC 8 Problems/Problem 13"
(→Solution 1) |
|||
Line 5: | Line 5: | ||
<math> \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math> | <math> \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math> | ||
− | ==Solution 1== | + | ==Solution 1(algebra solution)== |
Let <math>n</math>, <math>n+1</math>, and <math>n+2</math> be the lengths of the sides of the triangle. Then the perimeter of the triangle is <math>n + (n+1) + (n+2) = 3n+3</math>. Using the fact that the length of the smallest side is <math>30\%</math> of the perimeter, it follows that: | Let <math>n</math>, <math>n+1</math>, and <math>n+2</math> be the lengths of the sides of the triangle. Then the perimeter of the triangle is <math>n + (n+1) + (n+2) = 3n+3</math>. Using the fact that the length of the smallest side is <math>30\%</math> of the perimeter, it follows that: | ||
Revision as of 11:03, 28 April 2021
Problem
The lengths of the sides of a triangle in inches are three consecutive integers. The length of the shortest side is of the perimeter. What is the length of the longest side?
Solution 1(algebra solution)
Let , , and be the lengths of the sides of the triangle. Then the perimeter of the triangle is . Using the fact that the length of the smallest side is of the perimeter, it follows that:
. The longest side is then . Thus, answer choice is correct.
Solution 2
Since the length of the shortest side is a whole number and is equal to of the perimeter, it follows that the perimeter must be a multiple of . Adding the two previous integers to each answer choice, we see that . Thus, answer choice is correct.
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.