Difference between revisions of "2021 April MIMC 10 Problems/Problem 9"

(Created page with "Find the largest number in the choices that divides <math>11^{11}+13^2+126</math>. <math>\textbf{(A)} ~1 \qquad\textbf{(B)} ~2 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~8 \qq...")
 
(Solution)
 
Line 3: Line 3:
 
<math>\textbf{(A)} ~1 \qquad\textbf{(B)} ~2 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~8 \qquad\textbf{(E)} ~16</math>
 
<math>\textbf{(A)} ~1 \qquad\textbf{(B)} ~2 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~8 \qquad\textbf{(E)} ~16</math>
 
==Solution==
 
==Solution==
To be Released on April 26th.
+
We can look at the last digit of the expression first. <math>11^n\equiv1</math> (mod <math>10)</math> and <math>13^2\equiv9</math> (mod <math>10</math>). Therefore, the expression <math>11^{11}+13^2+126\equiv1+9+6\equiv6</math> (mod <math>10</math>). We know that it is divisible by <math>2</math> at this point. Then, we can look at the last two digits. <math>11^{11}\equiv11</math> (mod <math>100</math>) and <math>13^2\equiv69</math> (mod <math>100</math>). The expression <math>11^{11}+13^2+126\equiv11+69+6\equiv86</math> (mod <math>100</math>) <math>\equiv2</math> (mod <math>4</math>). Therefore, our answer is <math>\fbox{\textbf{(B)} 2}</math>.

Latest revision as of 12:36, 26 April 2021

Find the largest number in the choices that divides $11^{11}+13^2+126$.

$\textbf{(A)} ~1 \qquad\textbf{(B)} ~2 \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~8 \qquad\textbf{(E)} ~16$

Solution

We can look at the last digit of the expression first. $11^n\equiv1$ (mod $10)$ and $13^2\equiv9$ (mod $10$). Therefore, the expression $11^{11}+13^2+126\equiv1+9+6\equiv6$ (mod $10$). We know that it is divisible by $2$ at this point. Then, we can look at the last two digits. $11^{11}\equiv11$ (mod $100$) and $13^2\equiv69$ (mod $100$). The expression $11^{11}+13^2+126\equiv11+69+6\equiv86$ (mod $100$) $\equiv2$ (mod $4$). Therefore, our answer is $\fbox{\textbf{(B)} 2}$.