Difference between revisions of "2003 JBMO Problems/Problem 4"
(→Solution) |
Advancedjus (talk | contribs) m (→Solution) |
||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | Let <math>x, y, z > -1</math>. Prove that | ||
+ | |||
+ | <math>\frac {1+x^2}{1+y+z^2}+\frac {1+y^2}{1+z+x^2}+\frac {1+z^2}{1+x+y^2} \geq 2</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==Solution== | ||
+ | |||
Since <math>x, y, z > -1</math> and <math>x^2, y^2, z^2 \geq 0</math>, we have that <math>1+x^2, 1+y^2, 1+z^2</math> and <math>1+y+z^2, 1+z+x^2, 1+x+y^2</math> are always positive. | Since <math>x, y, z > -1</math> and <math>x^2, y^2, z^2 \geq 0</math>, we have that <math>1+x^2, 1+y^2, 1+z^2</math> and <math>1+y+z^2, 1+z+x^2, 1+x+y^2</math> are always positive. | ||
Line 13: | Line 23: | ||
We have | We have | ||
<math>\Sigma \frac {p}{q+2r} = \frac {\Sigma \frac {p}{q+2r}*\Sigma p(q+2r)}{\Sigma p(q+2r)}</math> | <math>\Sigma \frac {p}{q+2r} = \frac {\Sigma \frac {p}{q+2r}*\Sigma p(q+2r)}{\Sigma p(q+2r)}</math> | ||
+ | |||
By Cauchy-Schwarz, | By Cauchy-Schwarz, | ||
− | <math>\Sigma \frac {\frac {p}{q+2r}*\Sigma p | + | <math>\Sigma \frac {\frac {p}{q+2r}*\Sigma p(q+2r)}{\Sigma p(q+2r)} \geq \frac {(\Sigma p)^2}{\Sigma p(q+2r)} = \frac {(\Sigma p)^2}{3\Sigma pq}</math> |
+ | |||
Since <math>\Sigma p^2 \geq \Sigma pq</math>, we have <math>(\Sigma p)^2 \geq 3\Sigma pq</math>. | Since <math>\Sigma p^2 \geq \Sigma pq</math>, we have <math>(\Sigma p)^2 \geq 3\Sigma pq</math>. | ||
+ | |||
Thus, | Thus, | ||
<math>\Sigma\frac {p}{q+2r} \geq \frac{(\Sigma p)^2}{3\Sigma pq} \geq \frac {3\Sigma pq}{3\Sigma pq} = 1</math> | <math>\Sigma\frac {p}{q+2r} \geq \frac{(\Sigma p)^2}{3\Sigma pq} \geq \frac {3\Sigma pq}{3\Sigma pq} = 1</math> | ||
+ | |||
So, | So, | ||
− | <math>\Sigma \frac {1+x^2}{1+y+z^2} \geq \Sigma\frac {2(1+x^2)}{(y^2+1)+2(z^2+1)} = 2\Sigma \frac {1+x^2}{y^2+1+2(z^2+1)} = 2\Sigma \frac {p}{q+2r} \geq 2*1 = 2</math> | + | <math>\Sigma \frac {1+x^2}{1+y+z^2} \geq \Sigma\frac {2(1+x^2)}{(y^2+1)+2(z^2+1)} = 2\Sigma \frac {1+x^2}{y^2+1+2(z^2+1)} = 2\Sigma \frac {p}{q+2r} \geq 2*1 = 2</math>, as desired. |
Latest revision as of 17:17, 25 April 2021
Problem
Let . Prove that
Solution
Since and , we have that and are always positive.
Hence, and must also be positive.
From the inequality , we obtain that and, analogously, . Similarly, and .
Now,
Substituting and , we now need to prove .
We have
By Cauchy-Schwarz,
Since , we have .
Thus,
So,
, as desired.