Difference between revisions of "2021 USAJMO Problems/Problem 4"

(Created page with "Carina has three pins, labeled <math>A, B</math>, and <math>C</math>, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjac...")
 
m
Line 1: Line 1:
 +
==Problem==
 
Carina has three pins, labeled <math>A, B</math>, and <math>C</math>, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at distance <math>1</math> away. What is the least number of moves that Carina can make in order for triangle <math>ABC</math> to have area 2021?
 
Carina has three pins, labeled <math>A, B</math>, and <math>C</math>, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at distance <math>1</math> away. What is the least number of moves that Carina can make in order for triangle <math>ABC</math> to have area 2021?
  
 
(A lattice point is a point <math>(x, y)</math> in the coordinate plane where <math>x</math> and <math>y</math> are both integers, not necessarily positive.)
 
(A lattice point is a point <math>(x, y)</math> in the coordinate plane where <math>x</math> and <math>y</math> are both integers, not necessarily positive.)
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{USAJMO newbox|year=2021|num-b=3|num-a=5}}
 +
 +
[[Category:Olympiad Number Theory Problems]]
 +
{{MAA Notice}}

Revision as of 14:56, 15 April 2021

Problem

Carina has three pins, labeled $A, B$, and $C$, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at distance $1$ away. What is the least number of moves that Carina can make in order for triangle $ABC$ to have area 2021?

(A lattice point is a point $(x, y)$ in the coordinate plane where $x$ and $y$ are both integers, not necessarily positive.)

Solution

See Also

2021 USAJMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png