Difference between revisions of "2021 USAJMO Problems/Problem 2"

m
Line 18: Line 18:
  
 
~Leonard_my_dude
 
~Leonard_my_dude
 +
 +
== See Also ==
 +
{{USAJMO newbox|year=2021|num-b=1|num-a=3}}
 +
 +
[[Category:Olympiad Number Theory Problems]]
 +
{{MAA Notice}}

Revision as of 14:02, 15 April 2021

Problem

Rectangles $BCC_1B_2,$ $CAA_1C_2,$ and $ABB_1A_2$ are erected outside an acute triangle $ABC.$ Suppose that\[\angle BC_1C+\angle CA_1A+\angle AB_1B=180^{\circ}.\]Prove that lines $B_1C_2,$ $C_1A_2,$ and $A_1B_2$ are concurrent.

Solution

Leonard my dude.png

We first claim that the three circles $(BCC_1B_2),$ $(CAA_1C_2),$ and $(ABB_1A_2)$ are share a common intersection.

Let the second intersection of $(BCC_1B_2)$ and $(CAA_1C_2)$ be $K$. Then \begin{align*} \angle AKC &= 360^\circ - \angle BKA - \angle CKB \\ &= 360^\circ - (180^\circ - \angle AB_1B + 180^\circ - \angle BC_1C) \\& = 180^\circ - \angle CA_1A, \end{align*} which implies that $AA_1C_2CK$ is cyclic as desired.

Now we show that $K$ is the intersection of $B_1C_2,$ $C_1A_2,$ and $A_1B_2.$ Note that $\angle C_1XB = \angle BXA_2 = 90^\circ,$ so $A_2, K, C_1$ are collinear. Similarly, $B_1, K, C_2$ and $A_1, K, B_2$ are collinear, so the three lines concur and we are done.

~Leonard_my_dude

See Also

2021 USAJMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png