Difference between revisions of "2021 AIME I Problems/Problem 13"
Sugar rush (talk | contribs) (whoops) |
(→Solution) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Circles <math>\omega_1</math> and <math>\omega_2</math> with radii <math>961</math> and <math>625</math>, respectively, intersect at distinct points <math>A</math> and <math>B</math>. A third circle <math>\omega</math> is externally tangent to both <math>\omega_1</math> and <math>\omega_2</math>. Suppose line <math>AB</math> intersects <math>\omega</math> at two points <math>P</math> and <math>Q</math> such that the measure of minor arc <math>\widehat{PQ}</math> is <math>120^{\circ}</math>. Find the distance between the centers of <math>\omega_1</math> and <math>\omega_2</math>. | Circles <math>\omega_1</math> and <math>\omega_2</math> with radii <math>961</math> and <math>625</math>, respectively, intersect at distinct points <math>A</math> and <math>B</math>. A third circle <math>\omega</math> is externally tangent to both <math>\omega_1</math> and <math>\omega_2</math>. Suppose line <math>AB</math> intersects <math>\omega</math> at two points <math>P</math> and <math>Q</math> such that the measure of minor arc <math>\widehat{PQ}</math> is <math>120^{\circ}</math>. Find the distance between the centers of <math>\omega_1</math> and <math>\omega_2</math>. | ||
+ | |||
+ | ==Video solutions== | ||
+ | Who wanted to see animated video solutions can see this . I found this really helpful . | ||
+ | |||
+ | https://youtu.be/YtZ8_7i833E | ||
+ | |||
+ | P.S: This video is not made by me .And solution is same like below solutions . | ||
+ | |||
+ | ≈@rounak138 | ||
+ | |||
==Solution== | ==Solution== |
Revision as of 00:53, 7 April 2021
Problem
Circles and
with radii
and
, respectively, intersect at distinct points
and
. A third circle
is externally tangent to both
and
. Suppose line
intersects
at two points
and
such that the measure of minor arc
is
. Find the distance between the centers of
and
.
Video solutions
Who wanted to see animated video solutions can see this . I found this really helpful .
P.S: This video is not made by me .And solution is same like below solutions .
≈@rounak138
Solution
Let and
be the center and radius of
, and let
and
be the center and radius of
.
Since extends to an arc with arc
, the distance from
to
is
. Let
. Consider
. The line
is perpendicular to
and passes through
. Let
be the foot from
to
; so
. We have by tangency
and
. Let
.
Since
is on the radical axis of
and
, it has equal power with respect to both circles, so
since
. Now we can solve for
and
, and in particular,
We want to solve for
. By the Pythagorean Theorem (twice):
Therefore,
.
Solution 2 (Official MAA, Unedited)
Denote by ,
, and
the centers of
,
, and
, respectively. Let
and
denote the radii of
and
respectively,
be the radius of
, and
the distance from
to the line
. We claim that
where
. This solves the problem, for then the
condition implies
, and then we can solve to get
.
Denote by and
the centers of
and
respectively. Set
as the projection of
onto
, and denote by
the intersection of
with
. Note that
. Now recall that
Furthermore, note that
Substituting the first equality into the second one and subtracting yields
which rearranges to the desired.
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.