Difference between revisions of "Euc20198/Sub-Problem 2"
(→Problem) |
(→Problem) |
||
Line 2: | Line 2: | ||
Given 0<x<<math>(\pi)</math>/2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a(<math>\pi</math>)^2 + b(<math>\pi</math>) + c)/d where a,b,c,d are integers | Given 0<x<<math>(\pi)</math>/2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a(<math>\pi</math>)^2 + b(<math>\pi</math>) + c)/d where a,b,c,d are integers | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | == Video Solution == | ||
+ | https://www.youtube.com/watch?v=3ImnLWRcjYQ | ||
+ | |||
+ | ~NAMCG |
Latest revision as of 22:03, 22 March 2021
Problem
Given 0<x</2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a()^2 + b() + c)/d where a,b,c,d are integers
Solution
Video Solution
https://www.youtube.com/watch?v=3ImnLWRcjYQ
~NAMCG