Difference between revisions of "2021 AIME II Problems/Problem 9"
(→Solution) |
(→Solution 1) |
||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | We make use of the (olympiad | + | We make use of the (olympiad number theory ) lemma that <math>\gcd(2^a-1,2^b-1)=2^{\gcd(a,b)}-1</math>. |
+ | |||
Noting <math>\gcd(2^m+1,2^m-1)=\gcd(2^m+1,2)=1</math>, we have (by difference of squares)<cmath>\gcd(2^m+1,2^n-1) \neq 1 \iff \gcd(2^{2m}-1,2^n-1) \neq \gcd(2^m-1,2^n-1) </cmath><cmath>\iff 2^{\gcd(2m,n)}-1 \neq 2^{\gcd(m,n)}-1 \iff \gcd(2m,n) \neq \gcd(m,n) \iff \nu_2(m)<\nu_2(n).</cmath> It is now easy to calculate the answer (with casework on <math>\nu_2(m)</math>) as <math>15 \cdot 15+8 \cdot 7+4 \cdot 3+2 \cdot 1=\boxed{295}</math>. | Noting <math>\gcd(2^m+1,2^m-1)=\gcd(2^m+1,2)=1</math>, we have (by difference of squares)<cmath>\gcd(2^m+1,2^n-1) \neq 1 \iff \gcd(2^{2m}-1,2^n-1) \neq \gcd(2^m-1,2^n-1) </cmath><cmath>\iff 2^{\gcd(2m,n)}-1 \neq 2^{\gcd(m,n)}-1 \iff \gcd(2m,n) \neq \gcd(m,n) \iff \nu_2(m)<\nu_2(n).</cmath> It is now easy to calculate the answer (with casework on <math>\nu_2(m)</math>) as <math>15 \cdot 15+8 \cdot 7+4 \cdot 3+2 \cdot 1=\boxed{295}</math>. | ||
+ | ~Lcz | ||
==See also== | ==See also== | ||
{{AIME box|year=2021|n=II|num-b=8|num-a=10}} | {{AIME box|year=2021|n=II|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:56, 22 March 2021
Problem
Find the number of ordered pairs such that and are positive integers in the set and the greatest common divisor of and is not .
Solution 1
We make use of the (olympiad number theory ) lemma that .
Noting , we have (by difference of squares) It is now easy to calculate the answer (with casework on ) as . ~Lcz
See also
2021 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.