Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 13"
(solution etc) |
m (typo) |
||
Line 10: | Line 10: | ||
So | So | ||
− | <math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{x_1 \cdot x_2 \cdot x_3 \cdot x_4}</math><math> = (x_1 + x_2)^2 - 2x_1x_2 + (x_3 + x_4)^2 - 2x_3x_4 = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}</math> | + | <math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{x_1 \cdot x_2 \cdot x_3 \cdot x_4} = x_1^2 + x_2^2 + x_3^2 + x_4^2</math><math> = (x_1 + x_2)^2 - 2x_1x_2 + (x_3 + x_4)^2 - 2x_3x_4 = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}</math> |
==See also== | ==See also== | ||
− | {{CYMO box|year=2007|l=Lyceum|num-b= | + | {{CYMO box|year=2007|l=Lyceum|num-b=12|num-a=14}} |
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 16:28, 6 May 2007
Problem
If are the roots of the equation and are the roots of the equation , then the expression equals to
Solution
, so and (the same goes for ).
So
See also
2007 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |