Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 29"

 
m (+)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
The minimum value of a positive integer <math>k</math>, for which the sum <math>S=k+(k+1)+(k+2)+\ldots+(k+10)</math> is a perfect square, is
+
The minimum value of a positive integer <math>k</math>, for which the sum <math>\displaystyle S=k+(k+1)+(k+2)+\ldots+(k+10)</math> is a [[perfect square]], is
  
 
<math> \mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } \mathrm{None\;of\;these}</math>
 
<math> \mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } \mathrm{None\;of\;these}</math>
  
 
==Solution==
 
==Solution==
<math>k+(k+1)+(k+2)+\ldots+(k+10)=11k+55=11(k+5)</math>
+
<math>\displaystyle k+(k+1)+(k+2)+\ldots+(k+10)=11k+55=11(k+5)</math>
  
The smallest value of <math>k</math> is <math>6\Rightarrow\mathrm{ B}</math>.
+
Thus, <math>k+5</math> must be divisible by <math>11</math>, and the minimum for <math>k</math> is <math>6\Longrightarrow\mathrm{ B}</math>.
  
 
==See also==
 
==See also==
*[[2007 Cyprus MO/Lyceum/Problems]]
+
{{CYMO box|year=2007|l=Lyceum|num-b=28|num-a=30}}
  
*[[2007 Cyprus MO/Lyceum/Problem 28|Previous Problem]]
+
[[Category:Introductory Algebra Problems]]
 
 
*[[2007 Cyprus MO/Lyceum/Problem 30|Next Problem]]
 

Latest revision as of 16:12, 6 May 2007

Problem

The minimum value of a positive integer $k$, for which the sum $\displaystyle S=k+(k+1)+(k+2)+\ldots+(k+10)$ is a perfect square, is

$\mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 10\qquad \mathrm{(D) \ } 11\qquad \mathrm{(E) \ } \mathrm{None\;of\;these}$

Solution

$\displaystyle k+(k+1)+(k+2)+\ldots+(k+10)=11k+55=11(k+5)$

Thus, $k+5$ must be divisible by $11$, and the minimum for $k$ is $6\Longrightarrow\mathrm{ B}$.

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30