Difference between revisions of "2021 AIME I Problems/Problem 13"
m (→Solution) |
m (→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | Let <math>O_i</math> and <math>r_i</math> be the center and radius <math>\omega_i</math>, and let <math>O</math> and <math>r</math> be the center and radius of <math>\omega</math>. | + | Let <math>O_i</math> and <math>r_i</math> be the center and radius of <math>\omega_i</math>, and let <math>O</math> and <math>r</math> be the center and radius of <math>\omega</math>. |
Since <math>\overline{AB}</math> extends to an arc with arc <math>120^\circ</math>, the distance from <math>O</math> to <math>\overline{AB}</math> is <math>r/2</math>. Let <math>X=\overline{AB}\cap \overline{O_1O_2}</math>. Consider <math>\triangle OO_1O_2</math>. The line <math>\overline{AB}</math> is perpendicular to <math>\overline{O_1O_2}</math> and passes through <math>X</math>. Let <math>H</math> be the foot from <math>O</math> to <math>\overline{O_1O_2}</math>; so <math>HX=r/2</math>. We have by tangency <math>OO_1=r+r_1</math> and <math>OO_2=r+r_2</math>. Let <math>O_1O_2=d</math>. | Since <math>\overline{AB}</math> extends to an arc with arc <math>120^\circ</math>, the distance from <math>O</math> to <math>\overline{AB}</math> is <math>r/2</math>. Let <math>X=\overline{AB}\cap \overline{O_1O_2}</math>. Consider <math>\triangle OO_1O_2</math>. The line <math>\overline{AB}</math> is perpendicular to <math>\overline{O_1O_2}</math> and passes through <math>X</math>. Let <math>H</math> be the foot from <math>O</math> to <math>\overline{O_1O_2}</math>; so <math>HX=r/2</math>. We have by tangency <math>OO_1=r+r_1</math> and <math>OO_2=r+r_2</math>. Let <math>O_1O_2=d</math>. |
Revision as of 22:40, 13 March 2021
Problem
Circles and with radii and , respectively, intersect at distinct points and . A third circle is externally tangent to both and . Suppose line intersects at two points and such that the measure of minor arc is . Find the distance between the centers of and .
Solution
Let and be the center and radius of , and let and be the center and radius of .
Since extends to an arc with arc , the distance from to is . Let . Consider . The line is perpendicular to and passes through . Let be the foot from to ; so . We have by tangency and . Let . Since is on the radical axis of and , it has equal power, so since . Now we can solve for and , and in particular, We want to solve for . By the Pythagorean Theorem (twice): Therefore, .
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.