Difference between revisions of "2021 AIME I Problems/Problem 7"
(→Solution 2) |
(→Solution 2) |
||
Line 37: | Line 37: | ||
We can now rewrite the equation: | We can now rewrite the equation: | ||
<cmath>\frac{2^p\cdot a}{2^p\cdot b} = \frac{4\alpha+1}{4\beta+1} \implies \frac{a}{b} = \frac{4\alpha+1}{4\beta+1}</cmath> | <cmath>\frac{2^p\cdot a}{2^p\cdot b} = \frac{4\alpha+1}{4\beta+1} \implies \frac{a}{b} = \frac{4\alpha+1}{4\beta+1}</cmath> | ||
+ | |||
+ | Now it is easy to tell that <math>a \equiv 1 (</math>mod <math>4)</math> and <math>b \equiv 1 (</math>mod <math>4)</math>. However, there is another case: that <math>a \equiv 3 (</math>mod <math>4)</math> and <math>b \equiv 3 (</math>mod <math>4)</math>. This is because | ||
I WILL FINISH THE SOLUTION SOON, PLEASE DO NOT EDIT THIS BEFORE THEN, THANK YOU! | I WILL FINISH THE SOLUTION SOON, PLEASE DO NOT EDIT THIS BEFORE THEN, THANK YOU! |
Revision as of 04:11, 13 March 2021
Contents
Problem
Find the number of pairs of positive integers with
such that there exists a real number
satisfying
Solution 1
The maximum value of is
, which is achieved at
for some integer
. This is left as an exercise to the reader.
This implies that , and that
and
, for integers
.
Taking their ratio, we have
It remains to find all
that satisfy this equation.
If , then
. This corresponds to choosing two elements from the set
. There are
ways to do so.
If , by multiplying
and
by the same constant
, we have that
. Then either
, or
. But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set
. There are
ways here.
Finally, if , note that
must be an integer. This means that
belong to the set
, or
. Taking casework on
, we get the sets
. Some sets have been omitted; this is because they were counted in the other cases already. This sums to
.
In total, there are pairs of
.
This solution was brought to you by ~Leonard_my_dude~
Solution 2
In order for ,
.
This happens when
mod
This means that and
for any integers
and
.
As in Solution 1, take the ratio of the two equations:
Now notice that the numerator and denominator of are both odd, which means that
and
have the same power of two (the powers of 2 cancel out).
Let the common power be : then
, and
where
and
are integers between 1 and 30.
We can now rewrite the equation:
Now it is easy to tell that mod
and
mod
. However, there is another case: that
mod
and
mod
. This is because
I WILL FINISH THE SOLUTION SOON, PLEASE DO NOT EDIT THIS BEFORE THEN, THANK YOU!
-KingRavi
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.