Difference between revisions of "2021 AIME I Problems/Problem 2"
Sugar rush (talk | contribs) (Moved video solution to the end.) |
Mathboy100 (talk | contribs) |
||
Line 76: | Line 76: | ||
~JulianaL25 | ~JulianaL25 | ||
+ | |||
+ | == Solution 4 (Similar triangles and area) == | ||
+ | |||
+ | Again, let the intersection of <math>AE</math> and <math>BC</math> be <math>G</math>. By AA similarity, <math>AFG \sim CDG</math> with a <math>\frac{7}{3}</math> ratio. Define <math>x</math> as <math>\frac{[CDG]}{9}</math>. Because of similar triangles, <math>[AFG] = 49x</math>. Using <math>ABCD</math>, the area of the parallelogram is <math>33-18x</math>. Using <math>AECF</math>, the area of the parallelogram is <math>63-98x</math>. These equations are equal, so we can solve for <math>x</math> and obtain <math>x = \frac{3}{8}</math>. Thus, <math>18x = \frac{27}{4}</math>, so the area of the parallelogram is $33 - \frac{27}{4} = \frac{105}{4}. | ||
+ | |||
+ | ~mathboy100 | ||
==Video Solution by Punxsutawney Phil== | ==Video Solution by Punxsutawney Phil== |
Revision as of 10:41, 12 March 2021
Contents
Problem
In the diagram below, is a rectangle with side lengths and , and is a rectangle with side lengths and as shown. The area of the shaded region common to the interiors of both rectangles is , where and are relatively prime positive integers. Find .
Solution 1 (Similar Triangles)
Let be the intersection of and . From vertical angles, we know that . Also, given that and are rectangles, we know that . Therefore, by AA similarity, we know that triangles and are similar.
Let . Then, we have . By similar triangles, we know that and . We have .
Solving for , we have . The area of the shaded region is just . Thus, the answer is . ~yuanyuanC
Solution 2 (Coordinate Geometry Bash)
Suppose It follows that
Since is a rectangle, we have and The equation of the circle with center and radius is and the equation of the circle with center and radius is
We now have a system of two equations with two variables. Expanding and rearranging respectively give Subtracting from we get Simplifying and rearranging produce Substituting into gives which is a quadratic of We clear fractions by multiplying both sides by then solve by factoring: Since is in Quadrant IV, we have It follows that the equation of is
Let be the intersection of and and be the intersection of and Since is the -intercept of we obtain
By symmetry, quadrilateral is a parallelogram. Its area is and the requested sum is
~MRENTHUSIASM
Solution 3 (Pythagorean Theorem)
Let the intersection of and be , and let , so .
By the Pythagorean theorem, , so , and thus .
By the Pythagorean theorem again, :
Solving, we get , so the area of the parallelogram is , and .
~JulianaL25
Solution 4 (Similar triangles and area)
Again, let the intersection of and be . By AA similarity, with a ratio. Define as . Because of similar triangles, . Using , the area of the parallelogram is . Using , the area of the parallelogram is . These equations are equal, so we can solve for and obtain . Thus, , so the area of the parallelogram is $33 - \frac{27}{4} = \frac{105}{4}.
~mathboy100
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=H17E9n2nIyY&t=289s
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.