Difference between revisions of "2021 AIME I Problems/Problem 7"
m (→Solution) |
|||
Line 12: | Line 12: | ||
If <math>k = 1</math>, then <math>m \equiv n \equiv 1 \pmod 4</math>. This corresponds to choosing two elements from the set <math>\{1, 5, 9, 13, 17, 21, 25, 29\}</math>. There are <math>\binom 82</math> ways to do so. | If <math>k = 1</math>, then <math>m \equiv n \equiv 1 \pmod 4</math>. This corresponds to choosing two elements from the set <math>\{1, 5, 9, 13, 17, 21, 25, 29\}</math>. There are <math>\binom 82</math> ways to do so. | ||
− | If <math>k < 1</math>, by multiplying <math>m</math> and <math>n</math> by the same constant <math>c = \frac{1}{k}</math>, we have that <math>mc \equiv nc \equiv 1 \pmod 4</math>. | + | If <math>k < 1</math>, by multiplying <math>m</math> and <math>n</math> by the same constant <math>c = \frac{1}{k}</math>, we have that <math>mc \equiv nc \equiv 1 \pmod 4</math>. Then either <math>m \equiv n \equiv 1 \pmod 4</math>, or <math>m \equiv n \equiv 3 \pmod 4</math>. But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set <math>\{3, 7, 11, 15, 19, 23, 27\}</math>. There are <math>\binom 72</math> ways here. |
Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math> (why?). Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. | Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math> (why?). Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. |
Revision as of 20:53, 11 March 2021
Problem
Find the number of pairs of positive integers with such that there exists a real number satisfying
Solution
The maximum value of is , which is achieved at for some integer . This is left as an exercise to the reader.
This implies that , and that and , for integers .
Taking their ratio, we have It remains to find all that satisfy this equation.
If , then . This corresponds to choosing two elements from the set . There are ways to do so.
If , by multiplying and by the same constant , we have that . Then either , or . But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set . There are ways here.
Finally, if , note that must be an integer. This means that belong to the set , or (why?). Taking casework on , we get the sets . Some sets have been omitted; this is because they were counted in the other cases already. This sums to .
In total, there are pairs of .
This solution was brought to you by ~Leonard_my_dude~
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.