Difference between revisions of "2007 USAMO Problems/Problem 6"
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | |||
+ | Let <math>ABC</math> be an acute triangle with <math>\omega</math>, <math>\Omega</math>, and <math>R</math> being its incircle, circumcircle, and circumradius, respectively. Circle <math>\omega_A</math> is tangent internally to <math>\Omega</math> at <math>A</math> and tangent externally to <math>\omega</math>. Circle <math>\Omega_A</math> is tangent internally to <math>\Omega</math> at <math>A</math> and tangent internally to <math>\omega</math>. Let <math>P_A</math> and <math>Q_A</math> denote the centers of <math>\omega_A</math> and <math>\Omega_A</math>, respectively. Define points <math>P_B</math>, <math>Q_B</math>, <math>P_C</math>, <math>Q_C</math> analogously. Prove that | ||
+ | |||
+ | <math> | ||
+ | 8P_AQ_A \cdot P_BQ_B \cdot P_CQ_C \le R^3, | ||
+ | </math> | ||
+ | |||
+ | with equality if and only if triangle <math>ABC</math> is equilateral. | ||
== Solution == | == Solution == | ||
− | |||
{{USAMO newbox|year=2007|num-b=5|after=Last Question}} | {{USAMO newbox|year=2007|num-b=5|after=Last Question}} |
Revision as of 17:09, 25 April 2007
Problem
Let be an acute triangle with , , and being its incircle, circumcircle, and circumradius, respectively. Circle is tangent internally to at and tangent externally to . Circle is tangent internally to at and tangent internally to . Let and denote the centers of and , respectively. Define points , , , analogously. Prove that
with equality if and only if triangle is equilateral.
Solution
2007 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |