Difference between revisions of "2021 AMC 10A Problems/Problem 13"

(Problem)
Line 1: Line 1:
 +
==Simple and Quick Video Solution==
 +
https://youtu.be/bRrchiDCrKE
 +
 +
Education, the Study of Everything
 +
 
==Problem==
 
==Problem==
 
What is the volume of tetrahedron <math>ABCD</math> with edge lengths <math>AB = 2</math>, <math>AC = 3</math>, <math>AD = 4</math>, <math>BC = \sqrt{13}</math>, <math>BD = 2\sqrt{5}</math>, and <math>CD = 5</math> ?
 
What is the volume of tetrahedron <math>ABCD</math> with edge lengths <math>AB = 2</math>, <math>AC = 3</math>, <math>AD = 4</math>, <math>BC = \sqrt{13}</math>, <math>BD = 2\sqrt{5}</math>, and <math>CD = 5</math> ?

Revision as of 15:20, 15 February 2021

Simple and Quick Video Solution

https://youtu.be/bRrchiDCrKE

Education, the Study of Everything

Problem

What is the volume of tetrahedron $ABCD$ with edge lengths $AB = 2$, $AC = 3$, $AD = 4$, $BC = \sqrt{13}$, $BD = 2\sqrt{5}$, and $CD = 5$ ?

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~2\sqrt{3} \qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~3\sqrt{3}\qquad\textbf{(E)} ~6$

Solution

Drawing the tetrahedron out and testing side lengths, we realize that the triangles ABD and ABC are right triangles. It is now easy to calculate the volume of the tetrahedron using the formula for the volume of a pyramid: $\frac{3\cdot4\cdot2}{3\cdot2}=4$, so we have an answer of $\boxed{C}$. ~IceWolf10

Similar Problem

https://artofproblemsolving.com/wiki/index.php/2015_AMC_10A_Problems/Problem_21

Video Solution (Using Pythagorean Theorem, 3D Geometry - Tetrahedron)

https://youtu.be/i4yUaXVUWKE

~ pi_is_3.14

See also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png