Difference between revisions of "2021 AMC 10B Problems/Problem 15"

(Solution 2)
Line 24: Line 24:
  
 
~Lcz
 
~Lcz
 +
 +
==Solution 3==
 +
We can immediately note that the exponents of <math>x^{11}-7x^7+x^3</math> are an arithmetic sequence, so they are symmetric around the middle term. So, <math>x^{11}-7x^7+x^3 = x^7(x^4-7+\frac{1}{x^4})</math>. We can see that since <math>x+\frac{1}{x} = \sqrt{5}</math>, <math>x^2+2+\frac{1}{x^2} = 5</math> and therefore <math>x^2+\frac{1}{x^2} = 3</math>. Continuing from here, we get <math>x^4+2+\frac{1}{x^4} = 9</math>, so <math>x^4-7+\frac{1}{x^4} = 0</math>. We don't even need to find what <math>x^3</math> is! This is since <math>x^3\cdot0</math> is evidently <math>\boxed{0 (B)}</math>, which is our answer.
 +
 +
~sosiaops
  
 
== Video Solution by OmegaLearn (Algebraic Manipulations and Symmetric Polynomials) ==
 
== Video Solution by OmegaLearn (Algebraic Manipulations and Symmetric Polynomials) ==

Revision as of 21:31, 13 February 2021

Problem

The real number $x$ satisfies the equation $x+\frac{1}{x} = \sqrt{5}$. What is the value of $x^{11}-7x^{7}+x^3?$

$\textbf{(A)} ~-1 \qquad\textbf{(B)} ~0 \qquad\textbf{(C)} ~1 \qquad\textbf{(D)} ~2 \qquad\textbf{(E)} ~\sqrt{5}$

Solution 1

We square $x+\frac{1}{x}=\sqrt5$ to get $x^2+2+\frac{1}{x^2}=5$. We subtract 2 on both sides for $x^2+\frac{1}{x^2}=3$ and square again, and see that $x^4+2+\frac{1}{x^4}=9$ so $x^4+\frac{1}{x^4}=7$. We can divide our original expression of $x^{11}-7x^7+x^3$ by $x^7$ to get that it is equal to $x^7(x^4-7+\frac{1}{x^4})$. Therefore because $x^4+\frac{1}{x^4}$ is 7, it is equal to $x^7(0)=\boxed{(B) 0}$.

Solution 2

Multiplying both sides by $x$ and using the quadratic formula, we get $\frac{\sqrt{5} \pm 1}{2}$. We can assume that it is $\frac{\sqrt{5}+1}{2}$, and notice that this is also a solution the equation $x^2-x-1=0$, i.e. we have $x^2=x+1$. Repeatedly using this on the given (you can also just note Fibonacci numbers), \begin{align*}  (x^{11})-7x^7+x^3 &= (x^{10}+x^9)-7x^7+x^3 \\ &=(2x^9+x^8)-7x^7+x^3 \\ &=(3x^8+2x^7)-7x^7+x^3 \\ &=(3x^8-5x^7)+x^3 \\ &=(-2x^7+3x^6)+x^3 \\ &=(x^6-2x^5)+x^3 \\ &=(-x^5+x^4+x^3) \\ &=-x^3(x^2-x-1) = \boxed{(\textbf{B}) 0} \end{align*}

~Lcz

Solution 3

We can immediately note that the exponents of $x^{11}-7x^7+x^3$ are an arithmetic sequence, so they are symmetric around the middle term. So, $x^{11}-7x^7+x^3 = x^7(x^4-7+\frac{1}{x^4})$. We can see that since $x+\frac{1}{x} = \sqrt{5}$, $x^2+2+\frac{1}{x^2} = 5$ and therefore $x^2+\frac{1}{x^2} = 3$. Continuing from here, we get $x^4+2+\frac{1}{x^4} = 9$, so $x^4-7+\frac{1}{x^4} = 0$. We don't even need to find what $x^3$ is! This is since $x^3\cdot0$ is evidently $\boxed{0 (B)}$, which is our answer.

~sosiaops

Video Solution by OmegaLearn (Algebraic Manipulations and Symmetric Polynomials)

https://youtu.be/hzcSPVGFbC8

~ pi_is_3.14


2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions