Difference between revisions of "1956 AHSME Problems/Problem 9"

(Solution)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
== Problem 9==
 +
 +
When you simplify <math>\left[ \sqrt [3]{\sqrt [6]{a^9}} \right]^4\left[ \sqrt [6]{\sqrt [3]{a^9}} \right]^4</math>, the result is:
 +
 +
<math>\textbf{(A)}\ a^{16} \qquad\textbf{(B)}\ a^{12} \qquad\textbf{(C)}\ a^8 \qquad\textbf{(D)}\ a^4 \qquad\textbf{(E)}\ a^2 </math>
 +
 
== Solution ==
 
== Solution ==
 +
This simplifies to
 +
<cmath>(a^{\frac{9}{6}/3})^4 \cdot (a^{\frac{9}{3}/6})^4 = (a^{\frac{1}{2}})^4 \cdot (a^{\frac{1}{2}})^4 = (a^2)(a^2) = \boxed{a^4}</cmath>
 +
The answer is <math>\boxed{\textbf{(D)}}.</math>
 +
==See Also==
  
Notice that the first part and the second part of the expression are the same things, just in a different order, ie 3 and the 6 are switched around.
+
{{AHSME box|year=1956|num-b=8|num-a=10}}
Therefore, the question is reduced to
 
<cmath>2 \cdot [\root{3}{\root{6}{a^{9}}}]</cmath>
 
  
Therefore, the answer is <math>\fbox{(A) 10}</math>
+
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 20:29, 12 February 2021

Problem 9

When you simplify $\left[ \sqrt [3]{\sqrt [6]{a^9}} \right]^4\left[ \sqrt [6]{\sqrt [3]{a^9}} \right]^4$, the result is:

$\textbf{(A)}\ a^{16} \qquad\textbf{(B)}\ a^{12} \qquad\textbf{(C)}\ a^8 \qquad\textbf{(D)}\ a^4 \qquad\textbf{(E)}\ a^2$

Solution

This simplifies to \[(a^{\frac{9}{6}/3})^4 \cdot (a^{\frac{9}{3}/6})^4 = (a^{\frac{1}{2}})^4 \cdot (a^{\frac{1}{2}})^4 = (a^2)(a^2) = \boxed{a^4}\] The answer is $\boxed{\textbf{(D)}}.$

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png