Difference between revisions of "1956 AHSME Problems/Problem 3"

(See Also)
m (Solution)
Line 14: Line 14:
 
The distance light travels in one year can also be written as <math>587 * 10^{10}</math>. In 100 years, light will travel <math>(587 * 10^{10}) * 100 = 587 * 10^{12}</math>.
 
The distance light travels in one year can also be written as <math>587 * 10^{10}</math>. In 100 years, light will travel <math>(587 * 10^{10}) * 100 = 587 * 10^{12}</math>.
  
Therefore, our answer is  <math>(D)  587 * 10^{12}</math>.
+
Therefore, our answer is  <math>\boxed{\textbf{(D)}\quad 587 * 10^{12}}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 19:18, 12 February 2021

Problem #3

The distance light travels in one year is approximately $5,870,000,000,000$ miles. The distance light travels in $100$ years is:

$\textbf{(A)}\ 587 * 10^8\text{ miles}\qquad \textbf{(B)}\ 587 * 10^{10}\text{ miles}\qquad \textbf{(C)}\ 587*10^{-10}\text{ miles} \\ \textbf{(D)}\ 587 * 10^{12} \text{ miles} \qquad \textbf{(E)}\ 587* 10^{ - 12} \text{ miles}$


Solution

The distance light travels in one year can also be written as $587 * 10^{10}$. In 100 years, light will travel $(587 * 10^{10}) * 100 = 587 * 10^{12}$.

Therefore, our answer is $\boxed{\textbf{(D)}\quad  587 * 10^{12}}$.

See Also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png