Difference between revisions of "2021 AMC 12B Problems/Problem 16"
m (→Solution) |
m (→Problem 16) |
||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Let <math>g(x)</math> be a polynomial with leading coefficient <math>1,</math> whose three roots are the reciprocals of the three roots of <math>f(x)=x^3+ax^2+bx+c,</math> where <math>1<a<b<c.</math> What is <math>g(1)</math> in terms of <math>a,b,</math> and <math>c?</math> | Let <math>g(x)</math> be a polynomial with leading coefficient <math>1,</math> whose three roots are the reciprocals of the three roots of <math>f(x)=x^3+ax^2+bx+c,</math> where <math>1<a<b<c.</math> What is <math>g(1)</math> in terms of <math>a,b,</math> and <math>c?</math> | ||
Revision as of 20:03, 11 February 2021
Problem
Let be a polynomial with leading coefficient whose three roots are the reciprocals of the three roots of where What is in terms of and
Solution
Note that has the same roots as , if it is multiplied by some monomial so that the leading term is they will be equal. We have so we can see that Therefore