Difference between revisions of "2021 AMC 12A Problems/Problem 1"
(→Solution) |
|||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | What is the value of<cmath>2^{1+2+3}-(2^1+2^2+2^3)?</cmath><math>\textbf{(A) }0 \qquad \textbf{(B) }50 \qquad \textbf{(C) }52 \qquad \textbf{(D) }54 \qquad \textbf{(E) }57</math> | ||
− | + | ==Solution== | |
− | + | We evaluate the given expression to get that <cmath>2^{1+2+3}-(2^1+2^2+2^3)=2^6-(2^1+2^2+2^3)=64-2-4-8=50 \implies \boxed{\text{(A)}}</cmath> | |
− | |||
− | - | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2021|ab=A|before=First problem|num-a=2}} | {{AMC12 box|year=2021|ab=A|before=First problem|num-a=2}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:24, 11 February 2021
Problem
What is the value of
Solution
We evaluate the given expression to get that
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.