Difference between revisions of "2021 AMC 10A Problems/Problem 15"

(added solution)
(added formatting)
Line 1: Line 1:
Assume that the first equation is above the second, since order doesn't matter. Then <math>C>A</math> and <math>B>D</math>. Therefore the number of ways to choose the four integers is <math>\tbinom{6}{2}\tbinom{4}{2}=90</math>.
+
==Problem==
 +
Values for <math>A,B,C,</math> and <math>D</math> are to be selected from <math>\{1, 2, 3, 4, 5, 6\}</math> without replacement (i.e. no two letters have the same value). How many ways are there to make such choices so that the two curves <math>y=Ax^2+B</math> and <math>y=Cx^2+D</math> intersect? (The order in which the curves are listed does not matter; for example, the choices <math>A=3, B=2, C=4, D=1</math> is considered the same as the choices <math>A=4, B=1, C=3, D=2.</math>)
 +
 
 +
<math>\textbf{(A) }30 \qquad \textbf{(B) }60 \qquad \textbf{(C) }90 \qquad \textbf{(D) }180 \qquad \textbf{(E) }360</math>
 +
 
 +
==Solution==
 +
Assume that the first equation is above the second, since order doesn't matter. Then <math>C>A</math> and <math>B>D</math>. Therefore the number of ways to choose the four integers is <math>\tbinom{6}{2}\tbinom{4}{2}=90</math>, and the answer is <math>\boxed{C}</math>.
 +
 
 +
==See also==
 +
{{AMC10 box|year=2021|ab=A|num-b=14|num-a=16}}
 +
{{MAA Notice}}

Revision as of 14:02, 11 February 2021

Problem

Values for $A,B,C,$ and $D$ are to be selected from $\{1, 2, 3, 4, 5, 6\}$ without replacement (i.e. no two letters have the same value). How many ways are there to make such choices so that the two curves $y=Ax^2+B$ and $y=Cx^2+D$ intersect? (The order in which the curves are listed does not matter; for example, the choices $A=3, B=2, C=4, D=1$ is considered the same as the choices $A=4, B=1, C=3, D=2.$)

$\textbf{(A) }30 \qquad \textbf{(B) }60 \qquad \textbf{(C) }90 \qquad \textbf{(D) }180 \qquad \textbf{(E) }360$

Solution

Assume that the first equation is above the second, since order doesn't matter. Then $C>A$ and $B>D$. Therefore the number of ways to choose the four integers is $\tbinom{6}{2}\tbinom{4}{2}=90$, and the answer is $\boxed{C}$.

See also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png