|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #redirect [[2021 AMC 12A Problems/Problem 3]] |
− | If a circle is inscribed in a square and then have right triangles with legs on the sides of the square and within the area between the circle and the square, what is the area inside the square but outside the triangles and the circle if the area of the circle is equal to the perimeter of the square?
| |
− | | |
− | <math> \textbf{(A)}\ 12pi + 14\qquad\textbf{(B)}\ 11pi\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 32pi\qquad\textbf{(E)}\ 22pi </math>
| |
− | | |
− | ==Solution==
| |
− | <math> \textbf{(A)}\ 12pi + 14\qquad\textbf{(B)}\ 11pi\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 32pi\qquad\textbf{(E)}\ 22pi </math>
| |
− | | |
− | ==Note==
| |
− | This problem might also be on the AMC 12A. If so, please redirect it there.
| |
− | ==See also==
| |
− | {{AMC10 box|year=2021|ab=A|num-b=2|num-a=4}}
| |
− | {{MAA Notice}}
| |