Difference between revisions of "Cooga Georgeooga-Harryooga Theorem"
Redfiretruck (talk | contribs) (Created page with "=Definition= The Cooga Georgeooga-Harryooga Theorem (Circular Georgeooga-Harryooga Theorem) states that if you have <math>a</math> distinguishable objects and <math>b</math> o...") |
Redfiretruck (talk | contribs) (→Definition) |
||
Line 1: | Line 1: | ||
=Definition= | =Definition= | ||
− | The Cooga Georgeooga-Harryooga Theorem (Circular Georgeooga-Harryooga Theorem) states that if you have <math>a</math> distinguishable objects and <math>b</math> objects are kept away from each other, then there are <math>\frac{(a-b)!(a-b)!}{(a- | + | The Cooga Georgeooga-Harryooga Theorem (Circular Georgeooga-Harryooga Theorem) states that if you have <math>a</math> distinguishable objects and <math>b</math> objects are kept away from each other, then there are <math>\frac{(a-b)!(a-b)!}{(a-2b)!}</math> ways to arrange the objects in a circle. |
Created by George and Harry of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society] | Created by George and Harry of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society] |
Revision as of 18:14, 31 January 2021
Definition
The Cooga Georgeooga-Harryooga Theorem (Circular Georgeooga-Harryooga Theorem) states that if you have distinguishable objects and objects are kept away from each other, then there are ways to arrange the objects in a circle.
Created by George and Harry of The Ooga Booga Tribe of The Caveman Society