Difference between revisions of "1995 IMO Problems/Problem 2"
(→Solution) |
(→Solution) |
||
Line 51: | Line 51: | ||
After the setting <math>a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z},</math> and as <math>abc=1</math> so <math>\frac{1}{a}.\frac{1}{b}.\frac{1} {c}=1</math> concluding <math>x y z=1 .</math> | After the setting <math>a=\frac{1}{x}, b=\frac{1}{y}, c=\frac{1}{z},</math> and as <math>abc=1</math> so <math>\frac{1}{a}.\frac{1}{b}.\frac{1} {c}=1</math> concluding <math>x y z=1 .</math> | ||
− | + | <math>\textsf{Claim}:</math> | |
− | + | <cmath> | |
− | + | \frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{3}{2}} | |
− | + | </cmath> | |
By Titu Lemma, | By Titu Lemma, | ||
− | + | <cmath> | |
\implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{(x+y+z)^{2}}{2(x+y+z)} | \implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{(x+y+z)^{2}}{2(x+y+z)} | ||
− | + | </cmath> | |
− | + | <cmath> | |
\implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{(x+y+z)}{2} | \implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{(x+y+z)}{2} | ||
− | + | </cmath> | |
− | Now by AM-GM we know that | + | Now by AM-GM we know that <cmath> (x+y+z)\geq3\sqrt[3]{xyz} |
− | + | </cmath>and <math>xyz=1</math> which concludes to <math>\displaystyle \implies (x+y+z)\geq3\sqrt[3]{1}</math> | |
Therefore we get | Therefore we get | ||
− | + | <cmath> | |
\implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{3}{2} | \implies\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{3}{2} | ||
− | + | </cmath>Hence our claim is proved ~~ Aritra12 | |
=== Solution 5 === | === Solution 5 === |
Revision as of 09:40, 30 January 2021
Contents
Problem
(Nazar Agakhanov, Russia) Let be positive real numbers such that . Prove that
Solution
Solution 1
We make the substitution , , . Then Since and are similarly sorted sequences, it follows from the Rearrangement Inequality that By the Power Mean Inequality, Symmetric application of this argument yields Finally, AM-GM gives us as desired.
Solution 2
We make the same substitution as in the first solution. We note that in general, It follows that and are similarly sorted sequences. Then by Chebyshev's Inequality, By AM-GM, , and by Nesbitt's Inequality, The desired conclusion follows.
Solution 3
Without clever substitutions: By Cauchy-Schwarz, Dividing by gives by AM-GM.
Solution 3b
Without clever notation: By Cauchy-Schwarz,
Dividing by and noting that by AM-GM gives as desired.
Solution 4
After the setting and as so concluding
\[\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{3}{2}}\] (Error compiling LaTeX. Unknown error_msg)
By Titu Lemma, Now by AM-GM we know that and which concludes to
Therefore we get
Hence our claim is proved ~~ Aritra12
Solution 5
Proceed as in Solution 1, to arrive at the equivalent inequality But we know that by AM-GM. Furthermore, by Cauchy-Schwarz, and so dividing by gives as desired.
Solution 6
Without clever substitutions, and only AM-GM!
Note that . The cyclic sum becomes . Note that by AM-GM, the cyclic sum is greater than or equal to . We now see that we have the three so we must be on the right path. We now only need to show that . Notice that by AM-GM, , , and . Thus, we see that , concluding that
Solution 7 from Brilliant Wiki (Muirheads) =
https://brilliant.org/wiki/muirhead-inequality/
Scroll all the way down Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.