Difference between revisions of "1985 IMO Problems/Problem 6"
(Created page with "For every real number <math>x_1</math>, construct the sequence <math>x_1,x_2,\ldots</math> by setting <math>x_{n+1}=x_n \left(x_n + \frac{1}{n}\right)</math> for each <math>n \ge...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
For every real number <math>x_1</math>, construct the sequence <math>x_1,x_2,\ldots</math> by setting <math>x_{n+1}=x_n \left(x_n + \frac{1}{n}\right)</math> for each <math>n \geq 1</math>. Prove that there exists exactly one value of <math>x_1</math> for which <math>0<x_n<x_{n+1}<1</math> for every <math>n</math>. | For every real number <math>x_1</math>, construct the sequence <math>x_1,x_2,\ldots</math> by setting <math>x_{n+1}=x_n \left(x_n + \frac{1}{n}\right)</math> for each <math>n \geq 1</math>. Prove that there exists exactly one value of <math>x_1</math> for which <math>0<x_n<x_{n+1}<1</math> for every <math>n</math>. | ||
+ | |||
+ | ==Solution 1== | ||
+ | By recursive substitution, one can write <math>x_n=P_n(x_1)</math> , where <math>P_n</math> is a polynomial with non-negative coefficients and zero constant term. Thus, <math>P_n(0)=0</math>, <math>P_n</math> is strictly increasing in <math>[0,+\infty)</math> , and <math>\displaystyle \lim_{x_1 \rightarrow + \infty} P_n(x_1)=+\infty</math>. We can therefore define the inverse <math>P_n^{-1}</math> of <math>P_n</math> on <math>[0,+\infty)</math>. It follows that <math>x_1=P_n^{-1}(x_n)</math>, <math>P_n^{-1}(0)=0</math>, <math>P_n^{-1}</math> is strictly increasing in <math>[0,+\infty)</math>, and <math>\displaystyle \lim_{x_1 \rightarrow + \infty} P_n^{-1}(x_1) =+\infty</math>. | ||
+ | |||
+ | Denote by <math>\displaystyle a_n=P_n^{-1}(1-\frac{1}{n})</math> and <math>b_n=P_n^{-1}(1)</math>. By the monotonicity of <math>P_n^{-1}</math> we have <math>a_n<b_n</math> for each <math>n</math>. Note that: | ||
+ | |||
+ | (a) <math>\displaystyle x_n<x_{n+1} \Leftrightarrow x_n>1-\frac{1}{n} \Leftrightarrow P_n^{-1}(x_n)>P_n^{-1}(1-\frac{1}{n}) \Leftrightarrow x_1>a_n</math>; | ||
+ | (b) <math>\displaystyle x_n<1 \Leftrightarrow P_n^{-1}(x_n)<P_n^{-1}(1) \Leftrightarrow x_1<b_n</math>. | ||
+ | |||
+ | Thus, <math>0<x_n<x_{n+1}<1,\forall n</math> holds if and only if <math>a_n<x_1<b_n,\forall n</math>, or <math>\displaystyle x_1 \in \bigcap_{n=1}^{+\infty}(a_n,b_n)</math>. We need to show that <math>\displaystyle \bigcap_{n=1}^{+\infty}(a_n,b_n)</math> is a singleton. We have: | ||
+ | |||
+ | (c) if <math>x_1=a_n</math>, then <math>x_n=1-\frac{1}{n}</math>, which implies that <math>x_{n+1}=1-\frac{1}{n}<1-\frac{1}{n+1}=P_{n+1}(a_{n+1})</math>, and <math>x_1<a_{n+1}</math>. It follows that <math>a_n<a_{n+1},\forall n</math>; and | ||
+ | (d) if <math>x_1=b_n</math>, then <math>x_n=1</math>, which implies that <math>x_{n+1}=1+\frac{1}{n}>1=P_{n+1}(b_{n+1})</math>, and <math>x_1>b_{n+1}</math>. It follows that <math>b_n>b_{n+1},\forall n</math>; and | ||
+ | |||
+ | Thus, <math>a_n<a_{n+1}<b_{n+1}<b_n, \forall n</math>. Therefore, the two sequences <math>\{a_n\}_{n=1}^{+\infty}</math> and <math>\{b_n\}_{n=1}^{+\infty}</math> converge, and their limits <math>a</math> and <math>b</math> satisfy <math>a \leq b</math>. Hence, <math>\displaystyle \bigcap_{n=1}^{+\infty}(a_n,b_n)=[a,b]</math> is non-empty, which demonstrates the existence of <math>x_1</math>. | ||
+ | |||
+ | Now, suppose that <math>a \leq x_1 \leq x_1' \leq b</math>. We have <math>x_{n+1}'-x_{n+1} = (x_n'-x_n)(x_n'+x_n+\frac{1}{n}) \geq (x_n'-x_n)(2-\frac{1}{n}) \geq (x_n'-x_n)</math> for each <math>n</math>, so that <math>x_n'-x_n \geq x_1'-x_1</math> for each <math>n</math>. However, <math>1-\frac{1}{n}<x_n \leq x_n'<1</math>, so that <math>0 \leq x_n'-x_n<\frac{1}{n}</math>, which implies that <math>\displaystyle \lim_{n \rightarrow +\infty}(x_n'-x_n)=0</math>. Therefore, <math>x_1' \leq x_1</math>, proving unicity. | ||
+ | |||
+ | This solution was posted and copyrighted by DAFR. The original thread for this problem can be found here: [https://aops.com/community/p2751173] | ||
+ | |||
+ | ==Solution 2== | ||
+ | For each <math>n \ge 1</math> let <math>I_n</math> be the interval of real numbers <math>0 \textless x \textless 1</math> such that if <math>x=x_1</math>, we will have <math>x_n \textless x_{n+1} \textless 1</math>. (That is, the values of <math>x_1</math> which make <math>x_{n+1}</math> "work"). We must prove these intervals intersect at one point. | ||
+ | |||
+ | First, I prove they intersect. Notice that as <math>x_1</math> increases, <math>x_n</math> and <math>x_{n+1}</math> do too. So if <math>I_n=(a_n,b_n)</math> it is easy to see <math>a_n=x_1</math> will give <math>x_n=x_{n+1}=1-1/n</math> and <math>b_n=x_1</math> will give <math>x_{n+1}=1</math> (the "extremal" values <math>x_{n+1}</math> can take are given by the extremal values <math>x_1</math> can take). | ||
+ | |||
+ | But if <math>a_n=x_1</math> we see that <math>x_{n+1} \textless 1-1/(n+1)</math> and so <math>x_{n+1} \textgreater x_{n+2}</math> and similarly <math>x_1=b_n</math> gives <math>x_{n+1}=1</math> which gives a <math>x_{n+2}</math> too big. So basically when <math>x_1</math> only barely works for <math>x_{n+1}</math>, it won't work for <math>x_{n+2}</math>. So <math>I_{n+1}</math> is a subset of <math>I_n</math>. | ||
+ | |||
+ | So we have an infinite sequence of open intervals, each contained inside the previous one. Therefore their intersection must contain at least one number. This guarantees the existence of <math>x_1</math>. | ||
+ | |||
+ | But, we must prove that <math>x_1</math> can't take two different values. Suppose it could. Suppose <math>x_1=a,b</math> both work. Let <math>x_i</math> be the sequence generated by <math>a</math> and <math>x_i'</math> the sequence generated by <math>b</math>, and let <math>l_i=x_i'-x_i</math> (wlog <math>a \textless b</math>). Then we see <math>l_{n+1}=l_n(2x_n+l_n+1/n) \textgreater l_n</math> for <math>n \ge 2</math> since <math>2x_n \textgreater 1</math> since <math>x_n \textgreater 1-1/n \ge 1/2</math>. So there exists a constant <math>C</math> such that <math>x_k' \ge x_k+C</math> for <math>k \ge 2</math>. But since <math>x_k, x_k' \in (1-1/k, 1)</math>, this is impossible. So we're done. | ||
+ | |||
+ | This solution was posted and copyrighted by JuanOrtiz. The original thread for this problem can be found here: [https://aops.com/community/p3492644] | ||
+ | |||
+ | ==Solution 3== | ||
+ | Consider, now, the following observations: | ||
+ | |||
+ | (a) If, at any point, <math>x_{n+1}\le x_n</math>, then from here we know that | ||
+ | <cmath>x_n\le 1-\frac{1}{n},\quad x_{n+1}\le 1-\frac{1}{n} < 1-\frac{1}{n+1}\to x_{n+2}<x_{n+1}, \cdots x_m\le 1-\frac{1}{n} < 1-\frac{1}{m}\to x_{m+1}<x_m, \forall m>n</cmath>and therefore the sequence <math>\{x_n\}</math> will be monotonically decreasing after one point. | ||
+ | |||
+ | (b) If some <math>x</math> does satisfy <math>0<x_n<x_{n+1}<1</math> for all <math>n</math>, then <math>1-\frac{1}{n}<x_n<1</math> for all <math>n</math>, and therefore by Squeeze's theorem <math>\lim_{n\to\infty}x_n = 1</math>. | ||
+ | |||
+ | (c) If <math>x_n\ge 1</math> for some <math>n</math>, then <math>x_{n+1}=x_n(x_n+\frac 1n)>x_n^2\ge 1</math> and so <math>x_{n+m}>(x_{m+1})^{2^{m-1}}</math> which then gives <math>\lim_{n\to\infty}x_n=+\infty</math>. | ||
+ | |||
+ | (d) If <math>x_1=0</math>, then for each <math>n</math>, <math>x_n=0</math>. If <math>x_1\to\infty</math> then for each <math>n</math> (fixed), <math>x_n\to\infty</math>. Thus, we can denote a mapping <math>f_n:\mathbb{R}^{\ge 0}\to \mathbb{R}^{\ge 0}</math> that maps <math>x_1</math> to <math>x_n</math>, which is continuous and monotonically increasing, with <math>\lim_{x\to +\infty} f_n(x)=+\infty</math> so <math>f_n</math> is bijective. | ||
+ | |||
+ | Let's first show uniqueness. Suppose that <math>\{x_n\}</math> and <math>\{y_n\}</math> are both such sequences. We have <math>\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=1</math> and suppose that <math>y_1>x_1</math>. Then for all <math>n</math>, | ||
+ | \[ | ||
+ | \frac{y_{n+1}}{x_{n+1}} = \frac{y_n(y_n+\frac 1n)}{x_n(x_n+\frac 1n)}>\frac{y_n}{x_n} | ||
+ | \]so inductively, <math>\frac{y_{n+1}}{x_{n+1}}>(\frac{y_{1}}{x_{1}})^n</math> with <math>\lim_{n\to\infty}\frac{y_{n+1}}{x_{n+1}}=+\infty</math>. | ||
+ | However, <math>\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=1</math> gives <math>\lim_{n\to\infty}\frac{y_{n+1}}{x_{n+1}}=\frac{1}{1}=1</math>, contradiction. | ||
+ | Hence, the <math>x_1</math> that satisfies this must be unique. | ||
+ | |||
+ | Next, let's show existence. We have seen from above that, <math>y_1>x_1</math> implies <math>y_n>x_n</math>, and that if <math>x_n>1</math> for some <math>n</math> then <math>\{x_n\}</math> is monotonically increasing after some point. Suppose no such <math>x_1</math> exists. Let | ||
+ | \[ | ||
+ | A=\{x_1: \exists n: x_{n+1}<x_n\}\qquad B=\{x_1: \exists n: x_n>1\} | ||
+ | \]then if <math>x\in A</math>, <math>y\in A</math> for all <math>y<x</math> and similarly <math>x\in B</math>, <math>y\in B</math> for all <math>y>B</math>. Notice also an wasy fact that <math>1\in B</math>, so <math>A</math> is bounded. Define, now, <math>c=glb(A)</math>. As we assumed <math>A\cup B=\mathbb{R}^+</math>, this <math>c</math> implies that <math>x_1<c\to x_1\in A</math> and <math>x_1>c\to x_1\in B</math>. It remains to ask whether <math>c\in A</math> or <math>c\in B</math>. | ||
+ | |||
+ | If <math>c\in A</math>, then for this <math>x_1:=c</math>, <math>x_n\le 1-\frac{1}{n}</math> and so <math>x_{n+1}<1-\frac{1}{n+1}</math>. Let <math>y_{n+1}</math> be such that <math>x_{n+1}<y_{n+1}<1</math>. By above, there's exactly one <math>y_1</math> with <math>f_{n+1}(y_1)<y_{n+1}</math>, and notice that <math>y_1>x_1=c</math> by the monotonicity of <math>f_{n+1}</math>. This means that there exists <math>y_1>c\in A</math>, contradicting the definition of glb. A similar contradiction (but opposite direction) can also be established for the case <math>c\in B</math>. | ||
+ | |||
+ | Hence <math>c</math> is neither in <math>A</math> or <math>B</math>, means that <math>x_1=c</math> should satisfy the problem condition. Q.E.D. | ||
+ | |||
+ | This solution was posted and copyrighted by Anzoteh. The original thread for this problem can be found here: [https://aops.com/community/p18824436] | ||
+ | |||
+ | == See Also == {{IMO box|year=1985|num-b=5|after=Last Question}} |
Revision as of 23:01, 29 January 2021
Problem
For every real number , construct the sequence by setting for each . Prove that there exists exactly one value of for which for every .
Solution 1
By recursive substitution, one can write , where is a polynomial with non-negative coefficients and zero constant term. Thus, , is strictly increasing in , and . We can therefore define the inverse of on . It follows that , , is strictly increasing in , and .
Denote by and . By the monotonicity of we have for each . Note that:
(a) ; (b) .
Thus, holds if and only if , or . We need to show that is a singleton. We have:
(c) if , then , which implies that , and . It follows that ; and (d) if , then , which implies that , and . It follows that ; and
Thus, . Therefore, the two sequences and converge, and their limits and satisfy . Hence, is non-empty, which demonstrates the existence of .
Now, suppose that . We have for each , so that for each . However, , so that , which implies that . Therefore, , proving unicity.
This solution was posted and copyrighted by DAFR. The original thread for this problem can be found here: [1]
Solution 2
For each let be the interval of real numbers such that if , we will have . (That is, the values of which make "work"). We must prove these intervals intersect at one point.
First, I prove they intersect. Notice that as increases, and do too. So if it is easy to see will give and will give (the "extremal" values can take are given by the extremal values can take).
But if we see that and so and similarly gives which gives a too big. So basically when only barely works for , it won't work for . So is a subset of .
So we have an infinite sequence of open intervals, each contained inside the previous one. Therefore their intersection must contain at least one number. This guarantees the existence of .
But, we must prove that can't take two different values. Suppose it could. Suppose both work. Let be the sequence generated by and the sequence generated by , and let (wlog ). Then we see for since since . So there exists a constant such that for . But since , this is impossible. So we're done.
This solution was posted and copyrighted by JuanOrtiz. The original thread for this problem can be found here: [2]
Solution 3
Consider, now, the following observations:
(a) If, at any point, , then from here we know that and therefore the sequence will be monotonically decreasing after one point.
(b) If some does satisfy for all , then for all , and therefore by Squeeze's theorem .
(c) If for some , then and so which then gives .
(d) If , then for each , . If then for each (fixed), . Thus, we can denote a mapping that maps to , which is continuous and monotonically increasing, with so is bijective.
Let's first show uniqueness. Suppose that and are both such sequences. We have and suppose that . Then for all , \[ \frac{y_{n+1}}{x_{n+1}} = \frac{y_n(y_n+\frac 1n)}{x_n(x_n+\frac 1n)}>\frac{y_n}{x_n} \]so inductively, with . However, gives , contradiction. Hence, the that satisfies this must be unique.
Next, let's show existence. We have seen from above that, implies , and that if for some then is monotonically increasing after some point. Suppose no such exists. Let \[ A=\{x_1: \exists n: x_{n+1}<x_n\}\qquad B=\{x_1: \exists n: x_n>1\} \]then if , for all and similarly , for all . Notice also an wasy fact that , so is bounded. Define, now, . As we assumed , this implies that and . It remains to ask whether or .
If , then for this , and so . Let be such that . By above, there's exactly one with , and notice that by the monotonicity of . This means that there exists , contradicting the definition of glb. A similar contradiction (but opposite direction) can also be established for the case .
Hence is neither in or , means that should satisfy the problem condition. Q.E.D.
This solution was posted and copyrighted by Anzoteh. The original thread for this problem can be found here: [3]
See Also
1985 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |