Difference between revisions of "1994 AHSME Problems/Problem 3"
(Created page with "==Problem== How many of the following are equal to <math>x^x+x^x</math> for all <math>x>0</math>? <math>\textbf{I:}\ 2x^x \qquad\textbf{II:}\ x^{2x} \qquad\textbf{III:}\ (2x)^x ...") |
(→Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 6: | Line 6: | ||
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4 </math> | <math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 4 </math> | ||
==Solution== | ==Solution== | ||
+ | We look at each statement individually. | ||
+ | |||
+ | <math>\textbf{I:}\ 2x^x</math>. We note that <math>x^x+x^x=x^x(1+1)=2x^x</math>. So statement <math>\textbf{I}</math> is true. | ||
+ | |||
+ | <math>\textbf{II:}\ x^{2x}</math>. We find a counter example which is <math>x=1</math>. <math>2\neq 1</math>. So statement <math>\textbf{II}</math> is false. | ||
+ | |||
+ | <math>\textbf{III:}\ (2x)^x</math>. We see that this statement is equal to <math>2^xx^x</math>. <math>x=2</math> is a counter example. <math>8\neq 16</math>. So statement <math>\textbf{III}</math> is false. | ||
+ | |||
+ | <math>\textbf{IV:}\ (2x)^{2x}</math>. We see that <math>x=1</math> is again a counter example. <math>2\neq 4</math>. So statement <math>\textbf{IV}</math> is false. | ||
+ | |||
+ | Therefore, our answer is <math>\boxed{\textbf{(B) }1}</math>. | ||
+ | |||
+ | --Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician] | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME box|year=1994|num-b=2|num-a=4}} | ||
+ | {{MAA Notice}} |
Latest revision as of 16:26, 9 January 2021
Problem
How many of the following are equal to for all ?
Solution
We look at each statement individually.
. We note that . So statement is true.
. We find a counter example which is . . So statement is false.
. We see that this statement is equal to . is a counter example. . So statement is false.
. We see that is again a counter example. . So statement is false.
Therefore, our answer is .
--Solution by TheMaskedMagician
See Also
1994 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.