Difference between revisions of "1984 USAMO Problems/Problem 1"
Coolmath2017 (talk | contribs) (→Solution) |
Coolmath2017 (talk | contribs) (→Solution 2) |
||
Line 27: | Line 27: | ||
Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math> | Equating the coefficients of <math>x^3</math> and <math>x</math> with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of <math>x^2</math> and get <math>k=\boxed{86}.</math> | ||
+ | |||
+ | === Solution 3 === | ||
==See Also== | ==See Also== |
Revision as of 21:41, 15 December 2020
Problem
In the polynomial , the product of
of its roots is
. Find
.
Solution 1
Using Vieta's formulas, we have:
From the last of these equations, we see that . Thus, the second equation becomes
, and so
. The key insight is now to factor the left-hand side as a product of two binomials:
, so that we now only need to determine
and
rather than all four of
.
Let and
. Plugging our known values for
and
into the third Vieta equation,
, we have
. Moreover, the first Vieta equation,
, gives
. Thus we have two linear equations in
and
, which we solve to obtain
and
.
Therefore, we have , yielding
.
Solution 2
We start as before: and
. We now observe that a and b must be the roots of a quadratic,
, where r is a constant (secretly, r is just -(a+b)=-p from Solution #1). Similarly, c and d must be the roots of a quadratic
.
Now
Equating the coefficients of and
with their known values, we are left with essentially the same linear equations as in Solution #1, which we solve in the same way. Then we compute the coefficient of
and get
Solution 3
See Also
1984 USAMO (Problems • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.