Difference between revisions of "2001 AMC 10 Problems/Problem 1"
(→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
<math> \textbf{(A) }4\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }10\qquad\textbf{(E) }11 </math> | <math> \textbf{(A) }4\qquad\textbf{(B) }6\qquad\textbf{(C) }7\qquad\textbf{(D) }10\qquad\textbf{(E) }11 </math> | ||
− | == | + | == hi == |
The median of the list is <math> 10 </math>, and there are <math> 9 </math> numbers in the list, so the median must be the 5th number from the left, which is <math> n+6 </math>. | The median of the list is <math> 10 </math>, and there are <math> 9 </math> numbers in the list, so the median must be the 5th number from the left, which is <math> n+6 </math>. |
Revision as of 22:18, 9 December 2020
Problem
The median of the list is . What is the mean?
hi
The median of the list is , and there are numbers in the list, so the median must be the 5th number from the left, which is .
We substitute the median for and the equation becomes .
Subtract both sides by 6 and we get .
.
The mean of those numbers is which is .
Substitute for and .
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.