Difference between revisions of "1987 AHSME Problems/Problem 27"
(Added a solution with explanation) |
(→See also) |
(One intermediate revision by the same user not shown) | |
(No difference)
|
Latest revision as of 17:45, 7 December 2020
Problem
A cube of cheese is cut along the planes and . How many pieces are there? (No cheese is moved until all three cuts are made.)
Solution
The cut separates the cube into points with and points with , and analogous results apply for the other cuts. Thus, which piece a particular point is in depends only on the relative sizes of its coordinates , , and - for example, all points with the ordering are in the same piece. Thus, as there are possible orderings, there are pieces, which is answer .
See also
1987 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 26 |
Followed by Problem 28 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.