Difference between revisions of "2014 USAJMO Problems/Problem 3"

(Created page with "==Problem== Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\...")
 
(Redirected to the equivalent USAMO problem.)
(Tag: New redirect)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2014 USAMO Problems/Problem 2]]
Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f : \mathbb{Z} \rightarrow \mathbb{Z}</math> such that <cmath>xf(2f(y)-x)+y^2f(2x-f(y))=\frac{f(x)^2}{x}+f(yf(y))</cmath> for all <math>x, y \in \mathbb{Z}</math> with <math>x \neq 0</math>.
 
 
 
==Solution==
 

Latest revision as of 17:37, 18 November 2020