Difference between revisions of "1950 AHSME Answer Key"
(→Answers) |
(→Answers) |
||
Line 8: | Line 8: | ||
4: <math>\textbf{(A)}\ \frac{a}{b}</math> | 4: <math>\textbf{(A)}\ \frac{a}{b}</math> | ||
− | 5: <math>\textbf{(A)} | + | 5: <math>\textbf{(A)} |
− | 6: <math>\textbf{(C)}\ y^{2}+10y-7=0< | + | 6: </math>\textbf{(C)}\ y^{2}+10y-7=0<math> |
− | 7: <math>\textbf{(B)}\ kggi00t+10u+1< | + | 7: </math>\textbf{(B)}\ kggi00t+10u+1<math> |
− | 8: <math>\mathrm{(C) }300\%< | + | 8: </math>\mathrm{(C) }300\%<math> |
− | 9: <math>\textbf{(A)}\ r^{2}< | + | 9: </math>\textbf{(A)}\ r^{2}<math> |
− | 10: <math>\mathrm{(D)}\text{ } 3+\sqrt6< | + | 10: </math>\mathrm{(D)}\text{ } 3+\sqrt6<math> |
− | 11: <math>\mathrm{(A)}\text{ }\mathrm{ Increases}< | + | 11: </math>\mathrm{(A)}\text{ }\mathrm{ Increases}<math> |
− | 12: <math>\mathrm{(C)}\text{ remains constant}< | + | 12: </math>\mathrm{(C)}\text{ remains constant}<math> |
− | 13: <math>\textbf{(D)}\ 0,1,2\text{ and }4< | + | 13: </math>\textbf{(D)}\ 0,1,2\text{ and }4<math> |
− | 14: <math>\textbf{(D)}\ \text{There is no solution}< | + | 14: </math>\textbf{(D)}\ \text{There is no solution}<math> |
− | 15: <math>\textbf{(E)}\ \text{Non-existent}< | + | 15: </math>\textbf{(E)}\ \text{Non-existent}<math> |
− | 16: <math>\mathrm{(B)}\ 5< | + | 16: </math>\mathrm{(B)}\ 5<math> |
− | 17: <math>\mathrm{(C)}\ y=100-5x-5x^2< | + | 17: </math>\mathrm{(C)}\ y=100-5x-5x^2<math> |
− | 18: <math>\textbf{(E)} \text{ Only 1 is true}< | + | 18: </math>\textbf{(E)} \text{ Only 1 is true}<math> |
− | 19: <math>\textbf{(C)}\ \frac{md}{m+r}\text{ days}< | + | 19: </math>\textbf{(C)}\ \frac{md}{m+r}\text{ days}<math> |
− | 20: <math>\textbf{(D)}\ 2< | + | 20: </math>\textbf{(D)}\ 2<math> |
− | 21: <math>\textbf{(B)}\ 24\text{ in}^{3}< | + | 21: </math>\textbf{(B)}\ 24\text{ in}^{3}<math> |
− | 22: <math>\textbf{(D)}\ 28\%< | + | 22: </math>\textbf{(D)}\ 28\%<math> |
− | 23: <math>\textbf{(B)}\ \ 83.33< | + | 23: </math>\textbf{(B)}\ \ 83.33<math> |
− | 24: <math>\textbf{(E)}\ 1\text{ real root}< | + | 24: </math>\textbf{(E)}\ 1\text{ real root}<math> |
− | 25: <math>\textbf{(D)}\ 5< | + | 25: </math>\textbf{(D)}\ 5<math> |
− | 26: <math>\textbf{(E)}\ \frac{10^{b}}{n}< | + | 26: </math>\textbf{(E)}\ \frac{10^{b}}{n}<math> |
− | 27: <math>\textbf{(B)}\ 34\text{ mph}< | + | 27: </math>\textbf{(B)}\ 34\text{ mph}<math> |
− | 28: <math>\textbf{(B)}\ 8\text{ mph}< | + | 28: </math>\textbf{(B)}\ 8\text{ mph}<math> |
− | 29: <math>\textbf{(B)}\ \dfrac{1}{8}+\dfrac{1}{x}=\dfrac{1}{2}< | + | 29: </math>\textbf{(B)}\ \dfrac{1}{8}+\dfrac{1}{x}=\dfrac{1}{2}<math> |
− | 30: <math>\textbf{(A)}\ 40< | + | 30: </math>\textbf{(A)}\ 40<math> |
− | 31: <math>\textbf{(C)}\ 1:4< | + | 31: </math>\textbf{(C)}\ 1:4<math> |
− | 32: <math>\textbf{(D)}\ 8\text{ ft}< | + | 32: </math>\textbf{(D)}\ 8\text{ ft}<math> |
− | 33: <math>\textbf{(D)}\ 36< | + | 33: </math>\textbf{(D)}\ 36<math> |
− | 34: <math>\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}< | + | 34: </math>\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}<math> |
− | 35: <math>\textbf{(B)}\ 4\text{ in}< | + | 35: </math>\textbf{(B)}\ 4\text{ in}<math> |
− | 36: <math>\textbf{(A)}\ 125\%< | + | 36: </math>\textbf{(A)}\ 125\%<math> |
− | 37: <math>\textbf{(E)}\ \text{Only some of the above statements are correct}< | + | 37: </math>\textbf{(E)}\ \text{Only some of the above statements are correct}<math> |
− | 38: <math>\textbf{(B)}\ \text{Is satisified for only 2 values of }x< | + | 38: </math>\textbf{(B)}\ \text{Is satisified for only 2 values of }x<math> |
− | 39: <math>\textbf{(E)}\ \text{Only }4\text{ and }5< | + | 39: </math>\textbf{(E)}\ \text{Only }4\text{ and }5<math> |
− | 40: <math>\textbf{(D)}\ 2< | + | 40: </math>\textbf{(D)}\ 2<math> |
− | 41: <math>\textbf{(D)}\ \dfrac{4ac-b^2}{4a}< | + | 41: </math>\textbf{(D)}\ \dfrac{4ac-b^2}{4a}<math> |
− | 42: <math>\textbf{(D)}\ \sqrt{2}< | + | 42: </math>\textbf{(D)}\ \sqrt{2}<math> |
− | 43: <math>\textbf{(E)}\ \text{None of these}< | + | 43: </math>\textbf{(E)}\ \text{None of these}<math> |
− | 44: <math>\textbf{(C)}\ \text{Cuts the }x\text{-axis}< | + | 44: </math>\textbf{(C)}\ \text{Cuts the }x\text{-axis}<math> |
− | 45: <math>\textbf{(A)}\ 4850< | + | 45: </math>\textbf{(A)}\ 4850<math> |
− | 46: <math>\textbf{(E)}\ \text{The area of the triangle is 0}< | + | 46: </math>\textbf{(E)}\ \text{The area of the triangle is 0}<math> |
− | 47: <math>\textbf{(C)}\ x=\dfrac{bh}{2h+b}< | + | 47: </math>\textbf{(C)}\ x=\dfrac{bh}{2h+b}<math> |
− | 48: <math>\textbf{(C)}\ \text{Equal to the altitude of the triangle}< | + | 48: </math>\textbf{(C)}\ \text{Equal to the altitude of the triangle}<math> |
− | 49: <math>\textbf{(D)}\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA< | + | 49: </math>\textbf{(D)}\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA<math> |
− | 50: <math>\textbf{(E)}\ 5\text{:}30\text{ p.m.} | + | 50: </math>\textbf{(E)}\ 5\text{:}30\text{ p.m.}$ |
== See Also == | == See Also == |
Revision as of 19:14, 6 November 2020
Answers
1:
2:
3:
4:
5: $\textbf{(A)}
6:$ (Error compiling LaTeX. Unknown error_msg)\textbf{(C)}\ y^{2}+10y-7=0\textbf{(B)}\ kggi00t+10u+1\mathrm{(C) }300\%\textbf{(A)}\ r^{2}\mathrm{(D)}\text{ } 3+\sqrt6\mathrm{(A)}\text{ }\mathrm{ Increases}\mathrm{(C)}\text{ remains constant}\textbf{(D)}\ 0,1,2\text{ and }4\textbf{(D)}\ \text{There is no solution}\textbf{(E)}\ \text{Non-existent}\mathrm{(B)}\ 5\mathrm{(C)}\ y=100-5x-5x^2\textbf{(E)} \text{ Only 1 is true}\textbf{(C)}\ \frac{md}{m+r}\text{ days}\textbf{(D)}\ 2\textbf{(B)}\ 24\text{ in}^{3}\textbf{(D)}\ 28\%\textbf{(B)}\ \ 83.33\textbf{(E)}\ 1\text{ real root}\textbf{(D)}\ 5\textbf{(E)}\ \frac{10^{b}}{n}\textbf{(B)}\ 34\text{ mph}\textbf{(B)}\ 8\text{ mph}\textbf{(B)}\ \dfrac{1}{8}+\dfrac{1}{x}=\dfrac{1}{2}\textbf{(A)}\ 40\textbf{(C)}\ 1:4\textbf{(D)}\ 8\text{ ft}\textbf{(D)}\ 36\textbf{(D)}\ \dfrac{5}{2\pi}\text{ in}\textbf{(B)}\ 4\text{ in}\textbf{(A)}\ 125\%\textbf{(E)}\ \text{Only some of the above statements are correct}\textbf{(B)}\ \text{Is satisified for only 2 values of }x\textbf{(E)}\ \text{Only }4\text{ and }5\textbf{(D)}\ 2\textbf{(D)}\ \dfrac{4ac-b^2}{4a}\textbf{(D)}\ \sqrt{2}\textbf{(E)}\ \text{None of these}\textbf{(C)}\ \text{Cuts the }x\text{-axis}\textbf{(A)}\ 4850\textbf{(E)}\ \text{The area of the triangle is 0}\textbf{(C)}\ x=\dfrac{bh}{2h+b}\textbf{(C)}\ \text{Equal to the altitude of the triangle}\textbf{(D)}\ \text{A circle with radius }3\text{ inches and center }4\text{ inches from }B\text{ along } BA\textbf{(E)}\ 5\text{:}30\text{ p.m.}$
See Also
1950 AHSME (Problems • Answer Key • Resources) | ||
Preceded by First AHSME |
Followed by 1951 AHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |