Difference between revisions of "2016 AMC 8 Problems/Problem 5"

(Solution)
m (Solution)
Line 15: Line 15:
 
==Solution==
 
==Solution==
  
From the second bullet point, we know that the second digit must be <math>3</math>. Because there is a remainder of <math>1</math> when it is divided by <math>9</math>, the multiple of <math>9</math> must end in a <math>2</math>. We now look for this one:  
+
From the second bullet point, we know that the second digit must be <math>3</math>. Because there is a remainder of <math>1</math> when it is divided by <math>9</math>, the multiple of <math>9</math> must end in a <math>2</math> in order for it to have the desired remainder<math>\pmod {10}.</math>. We now look for this one:  
  
 
<math>9(1)=9\\
 
<math>9(1)=9\\

Revision as of 22:13, 1 November 2020

The number $N$ is a two-digit number.

• When $N$ is divided by $9$, the remainder is $1$.

• When $N$ is divided by $10$, the remainder is $3$.

What is the remainder when $N$ is divided by $11$?


$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }7$

Video Solution

https://youtu.be/7an5wU9Q5hk?t=574

Solution

From the second bullet point, we know that the second digit must be $3$. Because there is a remainder of $1$ when it is divided by $9$, the multiple of $9$ must end in a $2$ in order for it to have the desired remainder$\pmod {10}.$. We now look for this one:

$9(1)=9\\ 9(2)=18\\ 9(3)=27\\ 9(4)=36\\ 9(5)=45\\ 9(6)=54\\ 9(7)=63\\ 9(8)=72$

The number $72+1=73$ satisfies both conditions. We subtract the biggest multiple of $11$ less than $73$ to get the remainder. Thus, $73-11(6)=73-66=\boxed{\textbf{(E) }7}$.

Video Solution

https://www.youtube.com/watch?v=LqnQQcUVJmA (has questions 1-5)


2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png