Difference between revisions of "1950 AHSME Problems/Problem 26"

m (Solution 3)
 
(4 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
<math> \textbf{(A)}\ \frac{b}{n}\qquad\textbf{(B)}\ bn\qquad\textbf{(C)}\ 10^{b}n\qquad\textbf{(D)}\ b-10^{n}\qquad\textbf{(E)}\ \frac{10^{b}}{n} </math>
 
<math> \textbf{(A)}\ \frac{b}{n}\qquad\textbf{(B)}\ bn\qquad\textbf{(C)}\ 10^{b}n\qquad\textbf{(D)}\ b-10^{n}\qquad\textbf{(E)}\ \frac{10^{b}}{n} </math>
  
==Solution==
+
==Solution 1==
  
 
We have <math>b=\log_{10}{10^b}</math>. Substituting, we find <math>\log_{10}{m}= \log_{10}{10^b}-\log_{10}{n}</math>. Using <math>\log{a}-\log{b}=\log{\dfrac{a}{b}}</math>, the left side becomes <math>\log_{10}{\dfrac{10^b}{n}}</math>. Because <math>\log_{10}{m}=\log_{10}{\dfrac{10^b}{n}}</math>, <math>m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}</math>.
 
We have <math>b=\log_{10}{10^b}</math>. Substituting, we find <math>\log_{10}{m}= \log_{10}{10^b}-\log_{10}{n}</math>. Using <math>\log{a}-\log{b}=\log{\dfrac{a}{b}}</math>, the left side becomes <math>\log_{10}{\dfrac{10^b}{n}}</math>. Because <math>\log_{10}{m}=\log_{10}{\dfrac{10^b}{n}}</math>, <math>m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}</math>.
 +
 +
==Solution 2==
 +
adding <math>\log_{10} n</math> to both sides:
 +
<cmath>\log_{10} m + \log_{10} n=b</cmath>
 +
using the logarithm property: <math>\log_a {b} + \log_a {c}=\log_a{bc}</math>
 +
<cmath>\log_{10} {mn}=b</cmath>
 +
rewriting in exponential notation:
 +
<cmath>10^b=mn</cmath>
 +
<cmath>m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}</cmath>
 +
~Vndom
 +
 +
==Solution 3==
 +
More simply, we can just simulate the problem, if we have <math>m = 10</math>, that means the right side must be 1, so the only way we can achieve that with distinct <math>n</math>, is if <math>b = 3</math>, and <math>n = 100</math>. With this we can look through the different answer choices substituting in <math>b</math>, <math>n</math>, and <math>m</math>, and find that <math>\boxed{\mathrm{(E)}}</math> is the only one that satisfies the question.
 +
 +
~Shadow-18
 +
 
==See Also==
 
==See Also==
  

Latest revision as of 18:38, 29 October 2020

Problem

If $\log_{10}{m}= b-\log_{10}{n}$, then $m=$

$\textbf{(A)}\ \frac{b}{n}\qquad\textbf{(B)}\ bn\qquad\textbf{(C)}\ 10^{b}n\qquad\textbf{(D)}\ b-10^{n}\qquad\textbf{(E)}\ \frac{10^{b}}{n}$

Solution 1

We have $b=\log_{10}{10^b}$. Substituting, we find $\log_{10}{m}= \log_{10}{10^b}-\log_{10}{n}$. Using $\log{a}-\log{b}=\log{\dfrac{a}{b}}$, the left side becomes $\log_{10}{\dfrac{10^b}{n}}$. Because $\log_{10}{m}=\log_{10}{\dfrac{10^b}{n}}$, $m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}$.

Solution 2

adding $\log_{10} n$ to both sides: \[\log_{10} m + \log_{10} n=b\] using the logarithm property: $\log_a {b} + \log_a {c}=\log_a{bc}$ \[\log_{10} {mn}=b\] rewriting in exponential notation: \[10^b=mn\] \[m=\boxed{\mathrm{(E) }\dfrac{10^b}{n}}\] ~Vndom

Solution 3

More simply, we can just simulate the problem, if we have $m = 10$, that means the right side must be 1, so the only way we can achieve that with distinct $n$, is if $b = 3$, and $n = 100$. With this we can look through the different answer choices substituting in $b$, $n$, and $m$, and find that $\boxed{\mathrm{(E)}}$ is the only one that satisfies the question.

~Shadow-18

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png