Difference between revisions of "Principle of Inclusion-Exclusion"
Mathpro12345 (talk | contribs) (→Proof) |
Mathpro12345 (talk | contribs) (→Remarks) |
||
Line 1: | Line 1: | ||
The '''Principle of Inclusion-Exclusion''' (abbreviated PIE) provides an organized method/formula to find the number of [[element]]s in the [[union]] of a given group of [[set]]s, the size of each set, and the size of all possible [[intersection]]s among the sets. | The '''Principle of Inclusion-Exclusion''' (abbreviated PIE) provides an organized method/formula to find the number of [[element]]s in the [[union]] of a given group of [[set]]s, the size of each set, and the size of all possible [[intersection]]s among the sets. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Examples == | == Examples == |
Revision as of 15:57, 24 October 2020
The Principle of Inclusion-Exclusion (abbreviated PIE) provides an organized method/formula to find the number of elements in the union of a given group of sets, the size of each set, and the size of all possible intersections among the sets.
Examples
2002 AIME I Problems/Problem 1 http://artofproblemsolving.com/wiki/index.php?title=2002_AIME_I_Problems/Problem_1#Problem
2011 AMC 8 Problems/Problem 6 https://artofproblemsolving.com/wiki/index.php?title=2011_AMC_8_Problems/Problem_6
2017 AMC 10B Problems/Problem 13 https://artofproblemsolving.com/wiki/index.php?title=2017_AMC_10B_Problems/Problem_13
2005 AMC 12A Problems/Problem 18 https://artofproblemsolving.com/wiki/index.php/2005_AMC_12A_Problems/Problem_18