Difference between revisions of "2012 JBMO Problems"

(created page w/ problems (from https://artofproblemsolving.com/community/c4214_2012_junior_balkan_mo))
 
m (changed solution link appearance)
 
Line 4: Line 4:
 
When does equality hold?
 
When does equality hold?
  
[[2012 JBMO Problems/Problem 1]]
+
[[2012 JBMO Problems/Problem 1|Solution]]
  
 
== Section 2==  
 
== Section 2==  
 
Let the circles <math>k_1</math> and <math>k_2</math> intersect at two points <math>A</math> and <math>B</math>, and let <math>t</math> be a common tangent of <math>k_1</math> and <math>k_2</math> that touches <math>k_1</math> and <math>k_2</math> at <math>M</math> and <math>N</math> respectively. If <math>t\perp AM</math> and <math>MN=2AM</math>, evaluate the angle <math>NMB</math>.
 
Let the circles <math>k_1</math> and <math>k_2</math> intersect at two points <math>A</math> and <math>B</math>, and let <math>t</math> be a common tangent of <math>k_1</math> and <math>k_2</math> that touches <math>k_1</math> and <math>k_2</math> at <math>M</math> and <math>N</math> respectively. If <math>t\perp AM</math> and <math>MN=2AM</math>, evaluate the angle <math>NMB</math>.
  
[[2012 JBMO Problems/Problem 2]]
+
[[2012 JBMO Problems/Problem 2|Solution]]
  
 
== Section 3 ==
 
== Section 3 ==
Line 16: Line 16:
 
b) Can <math>n</math> be <math>7</math> ?
 
b) Can <math>n</math> be <math>7</math> ?
  
[[2012 JBMO Problems/Problem 3]]
+
[[2012 JBMO Problems/Problem 3|Solution]]
  
 
== Section 4 ==
 
== Section 4 ==
 
Find all positive integers <math>x,y,z</math> and <math>t</math> such that <math>2^x3^y+5^z=7^t</math>.
 
Find all positive integers <math>x,y,z</math> and <math>t</math> such that <math>2^x3^y+5^z=7^t</math>.
  
[[2012 JBMO Problems/Problem 4]]
+
[[2012 JBMO Problems/Problem 4|Solution]]
  
 
==See Also==
 
==See Also==

Latest revision as of 20:42, 27 September 2020

Section 1

Let $a,b,c$ be positive real numbers such that $a+b+c=1$. Prove that \[\frac {a}{b} + \frac {a}{c} + \frac {c}{b} + \frac {c}{a} + \frac {b}{c} + \frac {b}{a} + 6 \geq 2\sqrt{2}\left (\sqrt{\frac{1-a}{a}} + \sqrt{\frac{1-b}{b}} + \sqrt{\frac{1-c}{c}}\right ).\] When does equality hold?

Solution

Section 2

Let the circles $k_1$ and $k_2$ intersect at two points $A$ and $B$, and let $t$ be a common tangent of $k_1$ and $k_2$ that touches $k_1$ and $k_2$ at $M$ and $N$ respectively. If $t\perp AM$ and $MN=2AM$, evaluate the angle $NMB$.

Solution

Section 3

On a board there are $n$ nails, each two connected by a rope. Each rope is colored in one of $n$ given distinct colors. For each three distinct colors, there exist three nails connected with ropes of these three colors. a) Can $n$ be $6$ ? b) Can $n$ be $7$ ?

Solution

Section 4

Find all positive integers $x,y,z$ and $t$ such that $2^x3^y+5^z=7^t$.

Solution

See Also

2012 JBMO (ProblemsResources)
Preceded by
2011 JBMO Problems
Followed by
2013 JBMO Problems
1 2 3 4
All JBMO Problems and Solutions