Difference between revisions of "2013 AMC 8 Problems/Problem 17"

(See Also)
Line 14: Line 14:
 
==Solution 3==
 
==Solution 3==
 
Let the first term be <math>x</math>. Our integers are <math>x,x+1,x+2,x+3,x+4,x+5</math>. We have, <math>6x+15=2013\implies x=333\implies x+5=\boxed{\textbf{(B)}\ 338}</math>
 
Let the first term be <math>x</math>. Our integers are <math>x,x+1,x+2,x+3,x+4,x+5</math>. We have, <math>6x+15=2013\implies x=333\implies x+5=\boxed{\textbf{(B)}\ 338}</math>
 +
 +
==Solution 4==
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2013|num-b=16|num-a=18}}
 
{{AMC8 box|year=2013|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:23, 26 September 2020

Problem

The sum of six consecutive positive integers is 2013. What is the largest of these six integers?

$\textbf{(A)}\ 335 \qquad \textbf{(B)}\ 338 \qquad \textbf{(C)}\ 340 \qquad \textbf{(D)}\ 345 \qquad \textbf{(E)}\ 350$

Solution 1

The mean of these numbers is $\frac{\frac{2013}{3}}{2}=\frac{671}{2}=335.5$. Therefore the numbers are $333, 334, 335, 336, 337, 338$, so the answer is $\boxed{\textbf{(B)}\ 338}$

Solution 2

Let the $4^{\text{th}}$ number be $x$. Then our desired number is $x+2$.

Our integers are $x-3,x-2,x-1,x,x+1,x+2$, so we have that $6x-3 = 2013 \implies x = \frac{2016}{6} = 336 \implies x+2 = \boxed{\textbf{(B)}\ 338}$.

Solution 3

Let the first term be $x$. Our integers are $x,x+1,x+2,x+3,x+4,x+5$. We have, $6x+15=2013\implies x=333\implies x+5=\boxed{\textbf{(B)}\ 338}$

Solution 4

See Also

2013 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png