Difference between revisions of "1987 AIME Problems/Problem 7"
(solution) |
m (→Solution: trying to organize my thoughts better..) |
||
Line 5: | Line 5: | ||
<math>\displaystyle 1000 = 2^35^3</math> and <math>2000 = 2^45^3</math>. By [[LCM#Using prime factorization|looking at the prime factorization]] of <math>2000</math>, <math>c</math> must have a [[factor]] of <math>2^4</math>. If <math>c</math> has a factor of <math>5^3</math>, then there are two [[casework|cases]]: either (1) <math>a</math> or <math>b = 5^32^3</math>, or (2) one of <math>a</math> and <math>b</math> has a factor of <math>5^3</math> and the other a factor of <math>2^3</math>. For case 1, the other number will be in the form of <math>2^x5^y</math>, so there are <math>4 \cdot 4 = 16</math> possible such numbers; since this can be either <math>a</math> or <math>b</math> there are a total of <math>2(16)-1=31</math> possibilities. For case 2, <math>a</math> and <math>b</math> are in the form of <math>2^35^x</math> and <math>2^y5^3</math>, with <math>x < 3</math> and <math>y < 3</math> (if they were equal to 3, it would overlap with case 1). Thus, there are <math>2(3 \cdot 3) = 18</math> cases. | <math>\displaystyle 1000 = 2^35^3</math> and <math>2000 = 2^45^3</math>. By [[LCM#Using prime factorization|looking at the prime factorization]] of <math>2000</math>, <math>c</math> must have a [[factor]] of <math>2^4</math>. If <math>c</math> has a factor of <math>5^3</math>, then there are two [[casework|cases]]: either (1) <math>a</math> or <math>b = 5^32^3</math>, or (2) one of <math>a</math> and <math>b</math> has a factor of <math>5^3</math> and the other a factor of <math>2^3</math>. For case 1, the other number will be in the form of <math>2^x5^y</math>, so there are <math>4 \cdot 4 = 16</math> possible such numbers; since this can be either <math>a</math> or <math>b</math> there are a total of <math>2(16)-1=31</math> possibilities. For case 2, <math>a</math> and <math>b</math> are in the form of <math>2^35^x</math> and <math>2^y5^3</math>, with <math>x < 3</math> and <math>y < 3</math> (if they were equal to 3, it would overlap with case 1). Thus, there are <math>2(3 \cdot 3) = 18</math> cases. | ||
− | If <math>c</math> does not have a factor of <math>5^3</math>, then at least one of <math>a</math> and <math>b</math> must be <math>2^35^3</math>, and both must have a factor of <math>5^3</math>. Then, there are <math>4</math> solutions possible just considering <math>a = 2^35^3</math>, and a total of <math>4 \cdot 2 - 1 = 7</math> possibilities. Multiplying by three, as <math>0 \le c \le 2</math>, there are <math>7 \cdot 3 = 21</math>. Together, that makes <math>31 + 18 + | + | If <math>c</math> does not have a factor of <math>5^3</math>, then at least one of <math>a</math> and <math>b</math> must be <math>2^35^3</math>, and both must have a factor of <math>5^3</math>. Then, there are <math>4</math> solutions possible just considering <math>a = 2^35^3</math>, and a total of <math>4 \cdot 2 - 1 = 7</math> possibilities. Multiplying by three, as <math>0 \le c \le 2</math>, there are <math>7 \cdot 3 = 21</math>. Together, that makes <math>31 + 18 + 21 = 70</math> solutions for <math>(a, b, c)</math>. |
+ | |||
+ | {| border="1px" style="width:25%" align=center | ||
+ | |- | ||
+ | ! c || a || b || solutions | ||
+ | |- | ||
+ | | rowspan = 2 | <math>5^32^4</math> | ||
+ | | <math>2^35^3</math> | ||
+ | | <math>5^x2^y</math> | ||
+ | | 31 | ||
+ | |- | ||
+ | | <math>2^x5^3</math> || <math>2^35^y</math> || 18 | ||
+ | |- | ||
+ | | rowspan = 1 | <math>5^x2^4</math> || <math>2^35^3</math> || <math>5^y2^z</math> || 24 | ||
+ | |} | ||
== See also == | == See also == | ||
{{AIME box|year=1987|num-b=6|num-a=8}} | {{AIME box|year=1987|num-b=6|num-a=8}} |
Revision as of 19:47, 15 February 2007
Problem
Let denote the least common multiple of positive integers and . Find the number of ordered triples of positive integers for which , , and .
Solution
and . By looking at the prime factorization of , must have a factor of . If has a factor of , then there are two cases: either (1) or , or (2) one of and has a factor of and the other a factor of . For case 1, the other number will be in the form of , so there are possible such numbers; since this can be either or there are a total of possibilities. For case 2, and are in the form of and , with and (if they were equal to 3, it would overlap with case 1). Thus, there are cases.
If does not have a factor of , then at least one of and must be , and both must have a factor of . Then, there are solutions possible just considering , and a total of possibilities. Multiplying by three, as , there are . Together, that makes solutions for .
c | a | b | solutions |
---|---|---|---|
31 | |||
18 | |||
24 |
See also
1987 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |