Difference between revisions of "2004 AMC 10A Problems/Problem 23"

(New page: ==Problem== Circles <math>A</math>, <math>B</math>, and <math>C</math> are externally tangent to each other and internally tangent to circle <math>D</math>. Circles <math>B</math> and <mat...)
 
(Redirected page to 2004 AMC 12A Problems/Problem 19)
(Tag: New redirect)
 
(16 intermediate revisions by 13 users not shown)
Line 1: Line 1:
==Problem==
+
#redirect [[2004 AMC 12A Problems/Problem 19]]
Circles <math>A</math>, <math>B</math>, and <math>C</math> are externally tangent to each other and internally tangent to circle <math>D</math>. Circles <math>B</math> and <math>C</math> are congruent. Circle <math>A</math> has radius <math>1</math> and passes through the center of <math>D</math>. What is the radius of circle <math>B</math>?
 
 
 
<center>[[Image:AMC10_2004A_23.png]]</center>
 
 
 
<math> \mathrm{(A) \ } \frac{2}{3} \qquad \mathrm{(B) \ } \frac{\sqrt{3}}{2} \qquad \mathrm{(C) \ } \frac{7}{8} \qquad \mathrm{(D) \ } \frac{8}{9} \qquad \mathrm{(E) \ } \frac{1+\sqrt{3}}{3} </math>
 
 
 
==Solution==
 
 
 
== See also ==
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131335 AoPS topic]
 
{{AMC10 box|year=2004|ab=A|num-b=22|num-a=24}}
 

Latest revision as of 13:52, 17 August 2020