Difference between revisions of "2013 USAMO Problems/Problem 1"
(→Solution 4) |
(→Solution 4) |
||
Line 133: | Line 133: | ||
draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | ||
dot((-3.6988888888888977,6.426666666666669)); | dot((-3.6988888888888977,6.426666666666669)); | ||
− | label("$A$", (-3. | + | label("$A$", (-3.6988888888888977,6.426666666666669), N * labelscalefactor); |
dot((-7.61,-5)); | dot((-7.61,-5)); | ||
− | label("$B$", (-7. | + | label("$B$", (-7.61,-5), SW * labelscalefactor); |
dot((7.09,-5)); | dot((7.09,-5)); | ||
− | label("$C$", (7. | + | label("$C$", (7.09,-5), SE * labelscalefactor); |
dot((-2.958888888888898,-5)); | dot((-2.958888888888898,-5)); | ||
− | label("$P$", (-2. | + | label("$P$", (-2.958888888888898,-5), S * labelscalefactor); |
dot((0.5968131669050584,1.8770271258031248)); | dot((0.5968131669050584,1.8770271258031248)); | ||
− | label("$Q$", (0. | + | label("$Q$", (0.5968131669050584,1.8770271258031248), NE * labelscalefactor); |
dot((-5.053354907372894,2.4694710603912564)); | dot((-5.053354907372894,2.4694710603912564)); | ||
− | label("$R$", (- | + | label("$R$", (-5.053354907372894,2.4694710603912564), dir(165) * labelscalefactor); |
dot((-3.143912404905382,-2.142970212141873)); | dot((-3.143912404905382,-2.142970212141873)); | ||
− | label("$Z'$", (-3. | + | label("$Z'$", (-3.143912404905382,-2.142970212141873), dir(170) * labelscalefactor); |
dot((-3.413789986031826,2.0243286531799747)); | dot((-3.413789986031826,2.0243286531799747)); | ||
− | label("$Y'$", (-3. | + | label("$Y'$", (-3.413789986031826,2.0243286531799747), NE * labelscalefactor); |
dot((-3.3284001481939356,0.7057864725120093)); | dot((-3.3284001481939356,0.7057864725120093)); | ||
− | label("$X | + | label("$X$", (-3.3284001481939356,0.7057864725120093), dir(220) * labelscalefactor); |
dot((1.7922953932137468,0.6108747864253139)); | dot((1.7922953932137468,0.6108747864253139)); | ||
− | label("$V$", (1. | + | label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor); |
dot((-5.8024625203461,-5)); | dot((-5.8024625203461,-5)); | ||
− | label("$U$", (-5. | + | label("$U$", (-5.8024625203461,-5), S * labelscalefactor); |
dot((-0.10264330299819162,1.125351256231488)); | dot((-0.10264330299819162,1.125351256231488)); | ||
− | label("$T$", (-0. | + | label("$T$", (-0.10264330299819162,1.125351256231488), dir(275) * labelscalefactor); |
</asy> | </asy> | ||
Line 185: | Line 185: | ||
Similarly, since quadrilaterals <math>CQZ'P,</math> and <math>AQTR</math> are also cyclic, we have, | Similarly, since quadrilaterals <math>CQZ'P,</math> and <math>AQTR</math> are also cyclic, we have, | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | \angle Y' | + | \angle TY'Z' |
− | &=180^\circ-\angle | + | &=180^\circ-\angle RY'P\\ |
− | &=180^\circ-(180^\circ-\angle | + | &=180^\circ-(180^\circ-\angle RBP)\\ |
− | &=\angle | + | &=\angle RBP\\ |
− | &=\ | + | &=\beta, |
+ | \end{align*}</cmath> | ||
+ | and, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle Y'Z'T | ||
+ | &=180^\circ-\angle PZ'Q\\ | ||
+ | &=180^\circ-(180^\circ-\angle PCQ)\\ | ||
+ | &=\angle PCQ\\ | ||
+ | &=\gamma. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Since these three angles are of <math>\triangle TY'Z',</math> and they are equal to corresponding angles of <math>\triangle ABC,</math> by AA similarity, we know that <math>\triangle TY'Z'\sim \triangle ABC.</math> | ||
+ | |||
+ | We now consider the point <math>X=\omega_c\cap AC.</math> We know that the points <math>A,</math> <math>Q,</math> <math>T,</math> and <math>R</math> are concyclic. Hence, the points <math>A,</math> <math>T,</math> <math>X,</math> and <math>R</math> must also be concyclic. | ||
+ | |||
+ | Hence, quadrilateral <math>AQTX</math> is cyclic. | ||
+ | |||
+ | <asy> | ||
+ | import graph; size(12cm); | ||
+ | real labelscalefactor = 1.9; | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); | ||
+ | pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | ||
+ | |||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)--(7.09,-5)--cycle); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-7.61,-5)); | ||
+ | draw((-7.61,-5)--(7.09,-5)); | ||
+ | draw((7.09,-5)--(-3.6988888888888977,6.426666666666669)); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-2.958888888888898,-5)); | ||
+ | draw((-5.053354907372894,2.4694710603912564)--(1.7922953932137468,0.6108747864253139)); | ||
+ | draw((0.5968131669050584,1.8770271258031248)--(-5.8024625203461,-5)); | ||
+ | draw((-3.3284001481939356,0.7057864725120093)--(-0.10264330299819162,1.125351256231488)); | ||
+ | draw((-3.3284001481939356,0.7057864725120093)--(-5.053354907372894,2.4694710603912564)); | ||
+ | draw((-3.6988888888888977,6.426666666666669)--(-0.10264330299819162,1.125351256231488)); | ||
+ | dot((-3.6988888888888977,6.426666666666669)); | ||
+ | label("$A$", (-3.6988888888888977,6.426666666666669), N * labelscalefactor); | ||
+ | dot((-7.61,-5)); | ||
+ | label("$B$", (-7.61,-5), SW * labelscalefactor); | ||
+ | dot((7.09,-5)); | ||
+ | label("$C$", (7.09,-5), SE * labelscalefactor); | ||
+ | dot((-2.958888888888898,-5)); | ||
+ | label("$P$", (-2.958888888888898,-5), S * labelscalefactor); | ||
+ | dot((0.5968131669050584,1.8770271258031248)); | ||
+ | label("$Q$", (0.5968131669050584,1.8770271258031248), NE * labelscalefactor); | ||
+ | dot((-5.053354907372894,2.4694710603912564)); | ||
+ | label("$R$", (-5.053354907372894,2.4694710603912564), dir(165) * labelscalefactor); | ||
+ | dot((-3.143912404905382,-2.142970212141873)); | ||
+ | label("$Z'$", (-3.143912404905382,-2.142970212141873), dir(170) * labelscalefactor); | ||
+ | dot((-3.413789986031826,2.0243286531799747)); | ||
+ | label("$Y'$", (-3.413789986031826,2.0243286531799747), NE * labelscalefactor); | ||
+ | dot((-3.3284001481939356,0.7057864725120093)); | ||
+ | label("$X$", (-3.3284001481939356,0.7057864725120093), dir(220) * labelscalefactor); | ||
+ | dot((1.7922953932137468,0.6108747864253139)); | ||
+ | label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor); | ||
+ | dot((-5.8024625203461,-5)); | ||
+ | label("$U$", (-5.8024625203461,-5), S * labelscalefactor); | ||
+ | dot((-0.10264330299819162,1.125351256231488)); | ||
+ | label("$T$", (-0.10264330299819162,1.125351256231488), dir(275) * labelscalefactor); | ||
+ | </asy> | ||
+ | |||
+ | Since the angles <math>\angle ART</math> and <math>\angle AXT</math> are inscribed in the same arc <math>\overarc{AT},</math> we have, | ||
+ | <cmath>\begin{align*} | ||
+ | \angle AXT | ||
+ | &=\angle ART\\ | ||
+ | &=\theta. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | |||
+ | Consider <math>\triangle TY'X</math> and <math>\triangle ABP.</math> We know that <math>\angle XY'T</math> | ||
+ | |||
(Solution in progress) | (Solution in progress) | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 11:28, 6 August 2020
Problem
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that
Solution 1
In this solution, all lengths and angles are directed.
Firstly, it is easy to see by that concur at a point . Let meet again at and , respectively. Then by Power of a Point, we have Thusly But we claim that . Indeed, and Therefore, . Analogously we find that and we are done.
courtesy v_enhance
Solution 2
Diagram Refer to the Diagram link.
By Miquel's Theorem, there exists a point at which intersect. We denote this point by Now, we angle chase: In addition, we have Now, by the Ratio Lemma, we have (by the Law of Sines in ) (by the Law of Sines in ) by the Ratio Lemma. The proof is complete.
Solution 3
Use directed angles modulo .
Lemma.
Proof.
Now, it follows that (now not using directed angles) using the facts that and , and are similar triangles, and that equals twice the circumradius of the circumcircle of .
Solution 4
We can use some construction arguments to solve the problem.
Let and let We construct lines through the points and that intersect with at the points and respectively, and that intersect each other at We will construct these lines such that
Now we let the intersections of with and be and respectively. This construction is as follows.
We know that Hence, we have,
Since the opposite angles of quadrilateral add up to it must be cyclic. Similarly, we can also show that quadrilaterals and are also cyclic.
Since points and lie on we know that, and that
Hence, the points and coincide with the given points and respectively.
Since quadrilateral is also cyclic, we have,
Similarly, since quadrilaterals and are also cyclic, we have, and,
Since these three angles are of and they are equal to corresponding angles of by AA similarity, we know that
We now consider the point We know that the points and are concyclic. Hence, the points and must also be concyclic.
Hence, quadrilateral is cyclic.
Since the angles and are inscribed in the same arc we have,
Consider and We know that
(Solution in progress)
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.