Difference between revisions of "1956 AHSME Problems/Problem 49"
m |
m |
||
Line 5: | Line 5: | ||
Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, | Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence, | ||
− | <math>\angle AOB &= 180^\circ - \angle BAO - \angle ABO | + | <math>\angle AOB &= 180^\circ - \angle BAO - \angle ABO |
− | 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} | + | 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} |
− | 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} | + | 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} |
\frac{\angle BAP + \angle ABP}{2}.</math> | \frac{\angle BAP + \angle ABP}{2}.</math> | ||
Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath> | Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath> |
Revision as of 11:38, 1 August 2020
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence,
$\angle AOB &= 180^\circ - \angle BAO - \angle ABO
180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \frac{\angle BAP + \angle ABP}{2}.$ (Error compiling LaTeX. Unknown error_msg)
Finally, from triangle , , so