Difference between revisions of "2006 AMC 12A Problems/Problem 11"

(added category)
m (box, bit more)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Which of the following describes the graph of the equation <math>(x+y)^2=x^2+y^2</math>?
+
Which of the following describes the [[graph]] of the equation <math>(x+y)^2=x^2+y^2</math>?
  
 
<math> \mathrm{(A) \ } \;\mathrm{the\; empty\; set}\;\qquad \mathrm{(B) \ } \;\mathrm{one\; point}</math><math>\mathrm{(C) \ } \;\mathrm{two\; lines}\;\qquad \mathrm{(D) \ } \;\mathrm{a\; circle}</math><math>\mathrm{(E) \ } \;\mathrm{the\; entire \; plane}\;</math>
 
<math> \mathrm{(A) \ } \;\mathrm{the\; empty\; set}\;\qquad \mathrm{(B) \ } \;\mathrm{one\; point}</math><math>\mathrm{(C) \ } \;\mathrm{two\; lines}\;\qquad \mathrm{(D) \ } \;\mathrm{a\; circle}</math><math>\mathrm{(E) \ } \;\mathrm{the\; entire \; plane}\;</math>
  
 
== Solution ==
 
== Solution ==
<math> (x+y)^2 = x^2 + y^2 </math>
+
<math> (x+y)^2=x^2+y^2 </math>
  
 
<math> x^2 + 2xy + y^2 = x^2 + y^2 </math>
 
<math> x^2 + 2xy + y^2 = x^2 + y^2 </math>
Line 12: Line 12:
 
<math> 2xy = 0 </math>
 
<math> 2xy = 0 </math>
  
Either:
+
Either <math> x = 0 </math> or <math> y = 0 </math>. The [[union]] of them is 2 lines <math> \Rightarrow C</math>.
  
<math> x = 0 </math>
 
 
or
 
 
<math> y = 0 </math>
 
 
This describes 2 lines <math> \Rightarrow C </math>
 
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]
*[[2006 AMC 12A Problems/Problem 10|Previous Problem]]
+
 
*[[2006 AMC 12A Problems/Problem 12|Next Problem]]
+
{{AMC box|year=2006|n=12A|num-b=10|num-a=12}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 18:44, 31 January 2007

Problem

Which of the following describes the graph of the equation $(x+y)^2=x^2+y^2$?

$\mathrm{(A) \ } \;\mathrm{the\; empty\; set}\;\qquad \mathrm{(B) \ } \;\mathrm{one\; point}$$\mathrm{(C) \ } \;\mathrm{two\; lines}\;\qquad \mathrm{(D) \ } \;\mathrm{a\; circle}$$\mathrm{(E) \ } \;\mathrm{the\; entire \; plane}\;$

Solution

$(x+y)^2=x^2+y^2$

$x^2 + 2xy + y^2 = x^2 + y^2$

$2xy = 0$

Either $x = 0$ or $y = 0$. The union of them is 2 lines $\Rightarrow C$.

See also


{{{header}}}
Preceded by
Problem 10
AMC 12A
2006
Followed by
Problem 12