Difference between revisions of "2006 AIME I Problems"

Line 32: Line 32:
  
 
== Problem 7 ==
 
== Problem 7 ==
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region <math>C</math> to the area of shaded region <math>B</math> is <math>11frac5</math>. Find the ratio of shaded region <math>D</math> to the area of shaded region <math>A</math>
+
An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region <math>C</math> to the area of shaded region <math>B</math> is <math>frac{11}{5}</math>. Find the ratio of shaded region <math>D</math> to the area of shaded region <math>A</math>
  
 
[[Image:2006AimeA7.PNG]]
 
[[Image:2006AimeA7.PNG]]

Revision as of 19:58, 29 June 2020

2006 AIME I (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

In quadrilateral $ABCD , \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},  AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD.$

Solution

Problem 2

Let set $\mathcal{A}$ be a 90-element subset of $\{1,2,3,\ldots,100\},$ and let $S$ be the sum of the elements of $\mathcal{A}.$ Find the number of possible values of $S.$

Solution

Problem 3

Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $1/29$ of the original integer.

Solution

Problem 4

Let $N$ be the number of consecutive 0's at the right end of the decimal representation of the product $1!2!3!4!\cdots99!100!.$ Find the remainder when $N$ is divided by 1000.

Solution

Problem 5

The number $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$ can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $a\cdot b\cdot c.$

Solution

Problem 6

Let $\mathcal{S}$ be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$ where $a, b, c$ are distinct digits. Find the sum of the elements of $\mathcal{S}.$

Solution

Problem 7

An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $C$ to the area of shaded region $B$ is $frac{11}{5}$. Find the ratio of shaded region $D$ to the area of shaded region $A$

2006AimeA7.PNG

Solution

Problem 8

Hexagon $ABCDEF$ is divided into five rhombuses, $P, Q, R, S,$ and $T$, as shown. Rhombuses $P, Q, R,$ and $S$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $T$. Given that $K$ is a positive integer, find the number of possible values for $K.$

2006AimeA8.PNG

Solution

Problem 9

The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r,$ where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r).$

Solution

Problem 10

Eight circles of diameter 1 are packed in the first quadrant of the coordinate plane as shown. Let region $\mathcal{R}$ be the union of the eight circular regions. Line $l,$ with slope 3, divides $\mathcal{R}$ into two regions of equal area. Line $l$'s equation can be expressed in the form $ax=by+c,$ where $a, b,$ and $c$ are positive integers whose greatest common divisor is 1. Find $a^2+b^2+c^2.$

[asy] unitsize(0.50cm); draw((0,-1)--(0,6)); draw((-1,0)--(6,0)); draw(shift(1,1)*unitcircle); draw(shift(1,3)*unitcircle); draw(shift(1,5)*unitcircle); draw(shift(3,1)*unitcircle); draw(shift(3,3)*unitcircle); draw(shift(3,5)*unitcircle); draw(shift(5,1)*unitcircle); draw(shift(5,3)*unitcircle); [/asy]

Solution

Problem 11

A collection of 8 cubes consists of one cube with edge-length $k$ for each integer $k, 1 \le k \le 8.$ A tower is to be built using all 8 cubes according to the rules:

  • Any cube may be the bottom cube in the tower.
  • The cube immediately on top of a cube with edge-length $k$ must have edge-length at most $k+2.$

Let $T$ be the number of different towers than can be constructed. What is the remainder when $T$ is divided by 1000?

Solution

Problem 12

Find the sum of the values of $x$ such that $\cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x,$ where $x$ is measured in degrees and $100< x< 200.$

Solution

Problem 13

For each even positive integer $x,$ let $g(x)$ denote the greatest power of 2 that divides $x.$ For example, $g(20)=4$ and $g(16)=16.$ For each positive integer $n,$ let $S_n=\sum_{k=1}^{2^{n-1}}g(2k).$ Find the greatest integer $n$ less than 1000 such that $S_n$ is a perfect square.

Solution

Problem 14

A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let $h$ be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then $h$ can be written in the form $\frac m{\sqrt{n}},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor.$ (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x.$)

Solution

Problem 15

Given that a sequence satisfies $x_0=0$ and $|x_k|=|x_{k-1}+3|$ for all integers $k\ge 1,$ find the minimum possible value of $|x_1+x_2+\cdots+x_{2006}|.$

Solution

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
2005 AIME II Problems
Followed by
2006 AIME II Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png