|
|
(34 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
− | == Problem 18 ==
| + | #redirect [[2011 AMC 12A Problems/Problem 11]] |
− | | |
− | Circles <math>A, B,</math> and <math>C</math> each have radius 1. Circles <math>A</math> and <math>B</math> share one point of tangency. Circle <math>C</math> has a point of tangency with the midpoint of <math>\overline{AB}</math>. What is the area inside Circle <math>C</math> but outside circle <math>A</math> and circle <math>B</math> ?
| |
− | | |
− | == Solution ==
| |
− | | |
− | Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shades area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{2 \ \mathbf{(C)}}</math>.
| |
− | | |
− | == See Also ==
| |
− | | |
− | | |
− | {{AMC10 box|year=2011|ab=A|num-b=17|num-a=19}}
| |