|
|
(12 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
− | == Problem 18 ==
| + | #redirect [[2011 AMC 12A Problems/Problem 11]] |
− | Circles <math>A, B,</math> and <math>C</math> each have radius 1. Circles <math>A</math> and <math>B</math> share one point of tangency. Circle <math>C</math> has a point of tangency with the midpoint of <math>\overline{AB}</math>. What is the area inside Circle <math>C</math> but outside circle <math>A</math> and circle <math>B</math> ?
| |
− | <asy> pathpen = linewidth(.7); pointpen = black; pair A=(-1,0), B=-A, C=(0,1); fill(arc(C,1,0,180)--arc(A,1,90,0)--arc(B,1,180,90)--cycle, gray(0.5)); D(CR(D("A",A,SW),1)); D(CR(D("B",B,SE),1)); D(CR(D("C",C,N),1)); </asy>
| |
− | | |
− | <math> \textbf{(A)}\ 3 - \frac{\pi}{2} \qquad\textbf{(B)}\ \frac{\pi}{2} \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \frac{3\pi}{4} \qquad\textbf{(E)}\ 1 + \frac{\pi}{2} </math>
| |
− | [[Category: Introductory Geometry Problems]] | |
− | | |
− | == Solution ==
| |
− | | |
− | Not specific: Draw a rectangle with vertices at the centers of <math>A</math> and <math>B</math> and the intersection of <math>A, C</math> and <math>B, C</math>. Then, we can compute the shaded area as the area of half of <math>C</math> plus the area of the rectangle minus the area of the two sectors created by <math>A</math> and <math>B</math>. This is <math>\frac{\pi (1)^2}{2}+(2)(1)-2 \cdot \frac{\pi (1)^2}{4}=\boxed{ \mathbf{(C)} 2}</math>.
| |
− | | |
− | == Solution 2==
| |
− | | |
− | <asy>
| |
− | unitsize(12mm);
| |
− | defaultpen(linewidth(.6pt));
| |
− | | |
− | draw(Circle((0,0),1));
| |
− | draw(Circle((2,0),1));
| |
− | draw(Circle((1,1),1));
| |
− | dot((0,0));
| |
− | dot((2,0));
| |
− | dot((1,1));
| |
− | draw((0,0)--(0,1));
| |
− | fill(arc(C,1,0,180)--arc(A,1,90,0)--arc(B,1,180,90)--cycle, gray(0.5))
| |
− | | |
− | | |
− | </asy>
| |
− | | |
− | == See Also ==
| |
− | | |
− | | |
− | {{AMC10 box|year=2011|ab=A|num-b=17|num-a=19}}
| |
− | {{MAA Notice}}
| |