Difference between revisions of "2016 AMC 8 Problems/Problem 7"

(Solution)
(Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
We know that our answer must have an odd exponent in order for it to not be a square.  Because <math>4</math> is a perfect square, <math>4^{2019}</math> is also a perfect square, so our answer must be <math>\boxed{\textbf{(B) }2^{2017}}</math>.
+
Our answer must have an odd exponent in order for it to not be a square.  Because <math>4</math> is a perfect square, <math>4^{2019}</math> is also a perfect square, so our answer is <math>\boxed{\textbf{(B) }2^{2017}}</math>.
  
 
{{AMC8 box|year=2016|num-b=6|num-a=8}}
 
{{AMC8 box|year=2016|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:56, 24 June 2020

Which of the following numbers is not a perfect square?

$\textbf{(A) }1^{2016}\qquad\textbf{(B) }2^{2017}\qquad\textbf{(C) }3^{2018}\qquad\textbf{(D) }4^{2019}\qquad \textbf{(E) }5^{2020}$

Solution

Our answer must have an odd exponent in order for it to not be a square. Because $4$ is a perfect square, $4^{2019}$ is also a perfect square, so our answer is $\boxed{\textbf{(B) }2^{2017}}$.

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png