Difference between revisions of "2020 AIME II Problems/Problem 14"
(→Solution) |
m (→Solution) |
||
Line 21: | Line 21: | ||
The total number of solutions to <math>x</math> is <math>\binom{2004}{2} + \binom{2003}{2} + \binom{2002}{2} + ... + \binom{3}{2} + \binom{2}{2}</math>. Using the hockey stick theorem, we see this equals <math>\binom{2005}{3}</math>, and when we take the remainder of that number when divided by <math>1000</math>, we get the answer, <math>\boxed{10}</math> | The total number of solutions to <math>x</math> is <math>\binom{2004}{2} + \binom{2003}{2} + \binom{2002}{2} + ... + \binom{3}{2} + \binom{2}{2}</math>. Using the hockey stick theorem, we see this equals <math>\binom{2005}{3}</math>, and when we take the remainder of that number when divided by <math>1000</math>, we get the answer, <math>\boxed{10}</math> | ||
+ | |||
+ | ~aragornmf | ||
==Video Solution== | ==Video Solution== |
Revision as of 19:29, 12 June 2020
Contents
Problem
For real number let be the greatest integer less than or equal to , and define to be the fractional part of . For example, and . Define , and let be the number of real-valued solutions to the equation for . Find the remainder when is divided by .
Solution
To solve , we need to solve where , and to solve that we need to solve where .
It is clear to see for some integer there is exactly one value of in the interval where To understand this, imagine the graph of on the interval The graph starts at , is continuous and increasing, and approaches . So as long as , there will be a solution for in the interval.
Using this logic, we can find the number of solutions to . For every interval where there will be one solution for x in that interval. However, the question states , but because doesn't work we can change it to . Therefore, , and there are solutions to .
We can solve similarly. to satisfy the bounds of , so there are solutions to , and to satisfy the bounds of .
Going back to , there is a single solution for z in the interval , where . (We now have an upper bound for because we know .) There are solutions for , and the floors of these solutions create the sequence
Lets first look at the solution of where . Then would have solutions, and the floors of these solutions would also create the sequence .
If we used the solution of where , there would be solutions for . If we used the solution of where , there would be solutions for , and so on. So for the solution of where , there will be solutions for
If we now look at the solution of where , there would be solutions for . If we looked at the solution of where , there would be solutions for , and so on.
The total number of solutions to is . Using the hockey stick theorem, we see this equals , and when we take the remainder of that number when divided by , we get the answer,
~aragornmf
Video Solution
https://youtu.be/bz5N-jI2e0U?t=515
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.